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Abstract—In the field of assisted reproductive technology, the
differentiation of competent embryos ready to transfer is also
founded on the Gardner grading system, which is an assessment
of blastocysts that primarily focuses on morphology, but is
also largely subject to inter- and intra-observer variability. This
variability can decrease the integrity and continuity of the in-
vitro fertilization (IVF) process based on embryo classification to
determine viability and an improved probability of pregnancy. To
solve this problem, we present the application of Bootstrapping
Language Image Pre-training (BLIP), for blastocyst grading
along Gardner, and from that grading proposes an easy classifica-
tion scheme. Of 249 day-5 human blastocyst images and Gardner
grades, 204 images were used to fine-tune BLIP where BLIP
frames the grading task as medical image captioning. Select the
number of unique grades to determine that the number of model
outputs was greater than 10. The average training loss was 0.1010
and the fine-tuned model achieved a Recall-Oriented Understudy
for Gisting Evaluation score of 0.7391, Hamming accuracy of
0.8913 and a Metric for Evaluation of Translation with Explicit
ORdering of 0.3696 for the test set. These results demonstrate
that a fine-tuned vision language model can accurately approxi-
mate complex morphological features in the blastocyst image and
predict their assigned grade classification. Training and testing
codes for the model developed in this study are available in
https://github.com/MohanBhandari/GardnerGrade-VLM,

Index Terms—Clinical decision support, Gardner Grades,
Human Blastocyst, Image Captioning, Medical Images, Vision
Language Model

I. INTRODUCTION

IVF plays a vital role in reproductive medicine, helping
millions of infertile people become parents [1l]. More than 2.5
million IVF cycles worldwide produce about 500,000 births
annually [2]]. Success rates, based on live births per cycle,
depend on factors such as age and health. Choosing the best
embryo for transfer is crucial to increase pregnancy chances
and reduce risks such as preterm birth or low birth weight [3]].
For years, the Gardner system has been the benchmark for
embryo selection, using bright-field microscopy to manually
assess blastocysts [4]. It evaluates three key components:
blastocoel expansion, inner cell mass (ICM) quality, which
forms the fetus, and trophectoderm (TE) quality, which be-
comes the placenta. Although widely used, this method is
subjective and leads to inconsistent results even among skilled
embryologists. This variability can affect embryo selection and
clinical outcomes. Additionally, static morphological grades of
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this system, although related to implantation, are not always
reliable predictors of blastocyst viability or developmental
potential.

Studies have effectively used Convolutional Neural Net-
works (CNNs), such as ResNet, Inception, and U-Net, to
segment key components and standardize the evaluation of
blastocyst expansion, ICM quality, and TE quality, often
performing as well as or better than less-experienced embry-
ologists [SH7] . Advanced models, particularly those using
time-lapse imaging data, go further by directly predicting
implantation potential. These Al systems provide objective,
high-throughput analysis, but, they do not focus on automated
gardner grade guide (GGG).

Vision-Language Models (VLMs) introduce a flexible and
robust approach to embryo evaluation, surpassing traditional
Al segmentation methods [8|]. These models learn to connect
visual data with natural language by training on image-text
datasets, allowing them to interpret images alongside detailed
descriptions. This makes them highly adaptable for clinical
use, supporting tasks such as zero-shot classification, image-
text retrieval, visual question answering, and automated report
creation. Existing medical VLMs, such as MedCLIP or PMC-
CLIP, are mainly trained in radiology (e.g., X-rays, CT scans)
or pathology (e.g., histology slides), which differ significantly
from blastocyst microscopy in visual features and terminology
[9. [10]. Additionally, evaluating blastocysts requires detecting
subtle details such as TE cell count or ICM compactness,
unlike broader objects in general data sets such as ImageNet.

To overcome the limitations of existing Al approaches in
embryology, a framework for human blastocyst Grading using
bootstrapping language image pre-training (BLIP) is proposed.
BLIP can be domain-adapted to bridge the gap between
blastocyst morphology and descriptive grades of GGG. The
architecture of BLIP includes modules for captioning and
filtering and can be implemented to bootstrap its own learning
from limited datasets [[11].

The following are the objectives of the study.

a. This study aims to fine-tune the pre-trained vision-
language model, BLIP, for specialized task of generating
human blastocyst grade captions. The core challenge is
achieving an efficient domain transfer from the BLIP
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pretrained to the medical features of blastocyst mi-
Croscopy.

b. Evaluate BLIP performance using Recall-Oriented Un-
derstudy for Gisting Evaluation (ROUGE), Hamming
accuracy and Metric for Evaluation of Translation with
Explicit ORdering (METEOR).

II. REVIEW OF LITERATURE

A. Transfer Learning in medical imaging

In fields such as medical imaging, where labeled data are
often scarce, transfer learning has become a dominant strategy
for training deep neural networks. Different studies have
provided comprehensive applications of transfer learning in
medical images [12]]. Findings have been mixed; for example,
Mustafa et al. [13]] suggested that the transfer of natural images
can be beneficial if applied at a sufficient scale. Other studies
like those of Peng et al. [14] and Raghu et al.[15] have
suggested that large and complex models do not invariably
outperform simpler, more lightweight models. So, VLM can
be a better alternative in medical imaging.

B. Vision-Language Models

VLM is a critical area of research for medical image
analysis, particularly for the automatic generation of diagnos-
tic captions and radiology reports. This task is essential to
reduce clinician workload and standardize findings. Study by
Alomar et al. [16] highlighted the transition from traditional
CNN-LSTM architectures to more powerful transformer-based
models, which are “noticeably better” at capturing the com-
plex long-range dependencies required for clinically accurate
text. Different studies contribute to modern VLP approaches,
aiming to pre-train models on vast datasets before fine-tuning
them on specific medical tasks. Transformer based models
such as R2Gen [17,/18]], designed to generate radiology reports
by retrieving and modifying sentences from similar existing
reports, are now gradually being outperformed by VLM based
visual question answering and report generation [19].

VLM has been used to adapt successful frameworks in the
general-domain. Zhang et al. [20], explored the contrastive
learning paradigm for medical VLP, aiming to learn robust
medical visual representations of the associated text. This
concept was significantly advanced by MedCLIP [21]], which
was designed to build a robust domain-specific contrastive
model from scratch by pre-training millions of image-report
pairs to learn fine-grained medical semantics. The unified
framework in MedViLL [22] had the objective of improving
generalization for both understanding and generation tasks
using a unique attention masking scheme within a single
BERT-based model. This ”fine-tuning” approach with pre-
trained general models has proven highly effective. Clini-
calBLIP by Ji et al. [23] is an excellent example, with the
aim of demonstrating the effectiveness of fine-tuning a model
based on InstructBLIP for the specific task of generating
radiology reports. LLaVA-Med [24] is designed to create a

biomedical conversational assistant through visual instruction-
tuning, enabling it to generate highly detailed and context-
sensitive image descriptions. These VLM techniques are also
being applied to other medical specialties, such as pathology,
where He et al. [25] developed a model with the objective
of generating pathology captions by cleverly leveraging a
VQA data set. New VLM frameworks are being developed to
improve the accuracy of radiology reports by using a prompt-
based retrieval-generation system.

1II. METHODOLOGY

Figure [T| shows the overall workflow. The study begins with
system configuration and data preparation, where the image-
text pairs were loaded, cleaned, and filtered. A pre-trained
BLIP model is then fine-tuned over 50 epochs. During train-
ing, the model’s loss is monitored, and the best-performing
checkpoint is saved and evaluated.

A. Configuration setup

For the experiment, the model configurations are defined to
ensure reproducibility and optimize performance. The training
data are sourced from a CSV file with the grades and the
corresponding directory of blastocyst images. Model check-
points are periodically saved to preserve training progress. The
training process is set to run for a maximum of 50 epochs,
using a physical batch size of 8 image-text pairs to fit within
GPU memory constraints. To ensure training stability, this
is combined with gradient accumulation over 4 steps, which
simulates a larger, more effective batch size of 32. The fine-
tuning learning rate of 5 x 1077 is applied, along with a weight
loss of 0.01 to provide regularization and prevent overfitting.

B. Dataset and preprocessing

In this study, the microscopic dataset of human blastocysts
[27] is used. Each of the 249 images in this dataset has a mask
annotation and a unique categorical grade that represents its
quality according to GGG. The distribution of the grades is
not balanced and some categories, such as “3AA” and “4AA”,
have a high frequency. In this study, only image grades with
a frequency greater than 10 occurrences are included. A total
of 204 images and their associated grades are considered for
subsequent analytical robustness. Of 232 images, 80% are used
for training and 20% for testing

C. BLIP

The BLIP framework (Figure [2) uses a single visual trans-
former as an image encoder and a flexible text transformer
that operates in three modes, corresponding to its three main
pre-training objectives

a. Image-Text Contrastive (ITC)

ITC uses a unimodal encoder to align the visual features
of the image with the text features, teaching the model
to pull the representations of positive pairs closer.

b. Image-Text Matching (ITM)

ITM uses an image-grounded text encoder to predict
whether an image-text pair is a match. It learns fine-
grained alignment between vision and language.
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CranBT

c. Language Modeling (LM)
LM uses an image-grounded text decoder to generate

captions. It learns to automatically predict text based on
visual information.

D. Evaluation Metrics

1) ROUGE-I: Let |Syye| be the set of unigrams in the
reference (actual) grades |Sgen| be the set of unigrams in the

generated text. and |Siue N Seen| be the number of overlapping
unigrams. The ROUGE-1 is calculated as

2 - Precision - Recall
Precision + Recall

ROUGE-1 =

)

.. SiueNS,
where, Precision = l""gige“‘

‘ genl

and Recall = [Sre0Sl
’ [Sire| —~

2) Hamming Accuracy: For N is the total number of po-
sitions and C' is the number of matching positions, Hamming
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accuracy calculated as

C
Hamming Accuracy = N 2)

In this study N = 3.

3) Metric for Evaluation of Translation with Explicit OR-
dering: METEOR combines precision and recall into an F-
score, specifically the weighted harmonic mean, to balance
the two as:

METEOR — P.rf:cision - Recall 3)
« - Precision + (1 — ) - Recall

The default value of the weighting parameter (o« = 0.5) is
used [28]].

IV. RESULT ANALYSIS

The BLIP model trained in 50 epochs shows a training loss
of 0.1010 as shown in Figure [3]

101 —e— Train Loss

Loss

[ 10 20 30 40 50
Epochs

Fig. 3. Training Loss

The top-performing model, carefully adjusted and tracked
by using loss during training, was saved to generate the gard-
ner grades. Its performance was tested on randomly selected
dataset images, as shown in Figure [ (a), where it predicted a
“4AA” grade for a blastocyst image with a true “4AB” grade,
and in Figure [4] (b), where it accurately identified the correct
gardner grade.

Blast PCRM_d5.14 BMP Blast PCRM._d5.22 BMP

& aaa

+ Upload Image + Upload Image

(a) 4AB predicted to 4AA (b) 2AB predicted to 2AB

Fig. 4. Real time implementation of fine-tuned BLIP model

Table [[] presents the performance metrics for BLIP with
four key metrics: average test loss, ROUGE-1, METEOR, and
Hamming Accuracy for the test set. The average test loss
is 0.1801. ROUGE-1, with a value of 0.7391, is relatively
high, indicating strong alignment with the reference grades.
METEOR, at 0.3696, suggests reasonable semantic alignment.
Hamming Accuracy, at 0.8913, indicates high accuracy in
classification tasks.

TABLE I
PERFORMANCE METRICS

Metric Value
Average Test Loss 0.1801
ROUGE-1 0.7391
METEOR 0.3696
Hamming Accuracy  0.8913

V. CONCLUSION

This study shows the feasibility of automating the GGG
using a fine-tuned VLM. The variability of manual morpholog-
ical evaluation presents a significant challenge in standardizing
embryo selection during IVF. By framing blastocyst grading
as an image captioning task, the fine-tuned BLIP model effec-
tively interprets complex embryological features and generates
the corresponding Gardner grade classifications. The strong
performance of the model, evidenced by a high ROUGE-1
score of 0.7391 and a Hamming precision of 0.8913, indi-
cates its ability to accurately describe blastocyst morphology
according to established clinical guidelines. These findings
suggest that VLMs offer a flexible alternative to traditional
CNN-based approaches, capable of providing a comprehensive
descriptive assessment rather than just a numerical classifica-
tion. The implementation of BLIP improves the consistency,
objectivity, and efficiency of the embryo selection process in
clinical IVF workflows.

Future work should focus on expanding the dataset with
more diverse grades and incorporating temporal data from
time-lapse imaging to further improve robustness and poten-
tially correlate generated captions with ultimate implantation
potential, moving towards a more predictive model of embryo
viability.
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