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Abstract—Smart agriculture systems are becoming more and
more integrated based on IoT and artificial intelligence to aid
farm monitoring and decision-making, but most current solutions
support the assessment of single elements and are studied in
laboratory settings, restricting their practical implementation.
The current paper introduces a highly integrated, end-to-end
smart farming system which incorporates the real-time sensing
of the physical environment, automated irrigation management,
AI-based detection of plant diseases, and provision of information
to farmers into a single, low-cost system. The system is clearly
aimed at managing the practical deployment limitations such as
latency, energy efficiency, reliability of connectivity and scalabil-
ity in agricultural settings with resource limitation. In order to
accomplish the deployment-oriented challenges, a comparative
analysis of the convolutional neural networks namely ResNet-
50, DenseNet-201 and MobileNet-V2 are performed using a
large scale data set. DenseNet-201 is more accurate however,
MobileNet-V2 is chosen to deploy on the field due to its much low
inference time and model size, which is more applicable in limited
resources of agriculture facilities. In addition, an agricultural
news classification module is incorporated to filter domain-
specific information for farmers, with limitations in dataset size
and generalization explicitly discussed. Experimental data prove
that the proposed system effectively balances sensing, computa-
tion and automation requirements, bridging the gap between
laboratory-level performance and practical smart agriculture
deployment.

Index Terms—Smart irrigation, Crop monitoring system, Plant
disease detection, Real-time monitoring, Agricultural automation,
News Classification, Deployment-Oriented.

I. INTRODUCTION

Agriculture continues to be the mainstay of the Nepal econ-
omy supporting livelihoods, food security and rural employ-
ment of a significant percentage of the population. Neverthe-
less, the industry lacks systemic water management efficiency:

just a part of agricultural land is supplied with consistent
irrigation, the irrigation systems used are outdated in most
parts of the country and the efficiency of water use is low1.

Most of the current irrigation systems, especially the tra-
ditional and farmer operated irrigation systems cannot ensure
supply throughout the year because they rely on seasonal rain-
fall and natural water courses, prone to climate changes and
real time monitoring is not possible 2. This will usually result
in wastage of water, unequal allocation of water (particularly
to the mid- and tail-end farms) and decreased agricultural
productivity [1].

Furthermore, in addition to irrigation, Nepali farmers usu-
ally do not have the means to monitor the state of soil and
plants in real time. Thus, applying reactive and not proactive
crop management. This absence of an integrated technological
support adds to inefficiencies in the use of water, declines the
yield and limits sustainable development of agriculture. [2]

These difficulties have created an increasing necessity of
low-cost, accessible and integrated farming solutions that
could address the efficient control of water in addition to real-
time environmental tracking and smart agricultural health diag-
nosis as per the agro-ecological and socio-economic situation
in Nepal. As an illustration, Patil et al. state that precision
irrigation with the use of IoT is more efficient in terms of
water-use because it automates irrigation according to soil
moisture and other environmental conditions [3].

The further development of smart irrigation and monitoring
technologies favors the need to use IoT and sensor networks to
monitor farms in real time. Sarker et al. thoroughly discuss the

1Nepal: Irrigation and Water Resource Management
2Present Status of Irrigation in Nepal
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design of the systems of IoT-based smart greenhouses includ-
ing the ability of the environmental sensors and automated
controls to ensure the most favorable environment in which
crops can grow [4]. Additionally, [5] refer to the usefulness of
IoT-based solutions in ensuring sustainable irrigation and crop
protection, and the solutions are applicable to the situation of
smallholder farming . All these works show that intelligent
sensing and automation can have a profound effect on the
results of farming processes.

At the specific case of Nepal, there is some limited adoption
of digital technologies in agriculture analyze the perspectives
of smart farming system regarding the detection of disease and
crop protection in Nepal and note that there is a high potential
with little implementation owing to cost, shortage of technical
skills and insufficient infrastructure [6]. Also, farmers in Nepal
are struggling to access efficient irrigation systems and smart
and decentralized solutions should be considered to meet the
needs of the local community [7]. These results correspond
with the necessity to have an integrated, inexpensive, and easy-
to-use smart agriculture system that should be thought-out in
terms of Nepalese limitations.

Recent surveys and empirical studies have demonstrated the
growing potential of deep learning and Internet of Things (IoT)
technologies in modern agriculture. [22] highlighted that while
deep learning has achieved promising results in agricultural
applications such as crop disease detection, most systems are
evaluated under controlled settings and lack consideration of
real-world deployment constraints, including scalability, com-
putational efficiency and integration with sensing and actuation
mechanisms. Similarly, the comparative study by [23] showed
that fine-tuned deep convolutional neural networks can achieve
high accuracy for plant disease identification. However, the
analysis primarily focused on classification performance, with
limited emphasis on inference latency, model complexity and
practical deployment feasibility.

Most existing research studies IoT-based irrigation systems
and plant disease detection separately, rather than as a single
integrated system. Very few works combine real-time sensing,
automated irrigation and AI-based disease diagnosis in a
practical, low-cost framework that can work under real-world
conditions. Challenges such as unreliable internet connectivity,
sensor inaccuracies, system delay and scalability are often
ignored, even though they are critical in smallholder farming
environments like Nepal.

In addition, many plant disease detection studies focus
mainly on achieving high accuracy using deep learning mod-
els, without considering how fast the model runs or how large
it is. Lightweight models that are better suited for real-time
and low-resource agricultural deployment are not sufficiently
explored. This creates a gap between results obtained in labo-
ratory settings and what is practical for real-world agricultural
use.

To address these gaps, the present work proposes an inte-
grated smart agriculture framework that combines IoT-based
sensing and automated irrigation with deep learning–based
plant disease detection. In contrast to prior studies, this paper

emphasizes not only classification accuracy but also infer-
ence efficiency and model complexity through a comparative
evaluation of deep and lightweight CNN architectures. This
approach bridges the gap between algorithmic performance
and real-world agricultural deployment requirements, with
particular relevance to resource-limited farming environments.

This research will have the following objectives:

• To design and validate a tightly coupled farm monitoring
and control system in which sensing, processing, monitor-
ing, and actuation are closely integrated to ensure reliable
and practical field operation.

• To conduct a deployment-oriented evaluation of
lightweight convolutional neural network (CNN) models
for plant disease detection by comparing accuracy,
inference latency, and model complexity.

• To develop an integrated farm management solution in-
coporating smart irrigation, integrated backend- mobile
application ecosystem and farm monitoring.

• To design agricultural news classification module filtering
agriculture-related information for farmer oriented infor-
mation delivery.

II. SYSTEM DESIGN AND ARCHITECTURE

The system design and architecture aims to describe the
system’s design and architecture integrating IoT-based envi-
ronmental sensing, automated irrigation control and AI-driven
decision support within a unified smart agriculture framework.
As illustrated in Fig. 1 the architecture have the objective of
outlining the design, its functional and physical attributes.

Fig. 1: System Architecture of the IoT-AI Smart Irrigation
System

At the sensing layer, low-cost IoT sensors continuously
monitor key environmental parameters such as soil moisture,
temperature, and humidity. The sensor values are passed to
a processing layer via lightweight communication protocols
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appropriate to unreliable or bandwidth constrained communi-
cation. All the sensors used in the system which are shown in
Fig 2.

Fig. 2: IoT Device and Microcontroller Interaction.

The decision layer incorporates two modules which are an
automated irrigation control system that activates irrigation
according to real-time sensor values and a plant disease
detection system that examines the images of leaves with the
help of deep learning models. Inference of disease is done
without consideration of the sensing pipeline, allowing it to be
deployed on edge or cloud platforms based on the available
resources.

The application layer offers the delivery of information and
interchanges with users such as parameters like soil moisture,
temperature, humidity, irrigation status monitor, disease diag-
nosis details as well as advisory notifications and agricultural
related news. This layered separation is what makes sensing,
inference and actuation loosely coupled to provide better
system scale and maintenance.

Unlike existing approaches that focus on isolated com-
ponents, the presented architecture characterizes end-to-end
integration with the deliberate focus on deployment-related
constraints (latency, computational overhead and scalability of
the system). This design allows the practical implementation
in the smallholder farming setting, where low-cost hardware
usage, a lack of infrastructures and real-time responsiveness
are essential.

III. METHODOLOGICAL FRAMEWORK

The proposed system is designed in such a way that its
methodology revolves around the essential functional features
that have been created in the project. Every feature is backed
by a certain piece of hardware, software, communication
protocols and computational methods to create a complete
and working smart agriculture platform. The exposition of
the methodology in these characteristics makes the design
highly consistent with the target application of the Nepalese
farmers. Fig. 3 shows the physical implementation of the
hardware setup used for system deployment, including the

ESP32 controller, sensor modules, relay-based pump control,
IR sensor and power supply.

Fig. 3: Experimental Hardware Setup Used for System De-
ployment

A. Irrigation Control Module

The Intelligent Irrigation Control Module is designed to
automate water delivery based on real-time soil and micro-
environmental conditions. Soil moisture is monitored using a
capacitive soil moisture sensor, which measures changes in
the soil’s dielectric permittivity and outputs a corresponding
voltage to the ESP32’s ADC. This serves as the primary input
for irrigation decisions.

Irrigation water availability is monitored using a simple me-
chanical float sensor that acts as a safety switch, ensuring the
pump is never activated when the water reservoir is low [10].
Environmental temperature and humidity are measured using a
DHT11 sensor. The DHT11 transmits a fixed 40-bit frame con-
sisting of humidity (integer + decimal), temperature (integer +
decimal), and a checksum for data integrity. Internally, it uses
a thermistor for temperature and a polymer capacitive element
for humidity measurement. In outdoor agricultural conditions,
relative humidity typically ranges between 50–90% in summer
and 30–70% in winter, and the temperature–humidity relation-
ship influences moisture retention in soil. These readings are
therefore used as a secondary factor; when ambient humidity
is very low, the irrigation frequency is increased. A manual
mode for controlling the pump is also made available in the
mobile app, where triggering the pump function and timing
turns the pump motor on and off based on the app user’s
command.

Pump actuation is handled through an L298N H-Bridge
motor driver. The ESP32 controls the driver by sending
HIGH/LOW logic signals to enable or disable the pump based
on a combination of soil moisture levels, float-sensor status,
and DHT11 feedback. This ensures safe, automated, and
condition-aware water delivery. This setup enables a closed-
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loop automated irrigation system that is responsive to both soil
and environmental conditions.

B. Real-Time Environmental Monitoring Module

The Real-Time Environmental Monitoring Module continu-
ously tracks soil, water, and environmental parameters across
the farm. Soil and irrigation water pH are measured using
standard glass-electrode pH probes. Raw probe outputs range
from approximately +414 mV at pH 0 to –414 mV at pH
14, making them unsuitable for direct ADC sampling [11].
Therefore, an onboard pH interface module amplifies and
level-shifts these signals to a usable range (approximately
3.0 V at pH 0, 2.5 V at pH 7 and 2.0 V at pH 14) [12].
The ESP32 ADC digitizes the conditioned signal. Direct soil
pH serves as the primary fertility indicator, while irrigation
water pH is used as a secondary reference when water mixes
with the soil. Because pH sensors drift over time and are
temperature-dependent, calibration is performed through the
module’s trimmer capacitors and the probe is kept wet to
maintain accuracy.

Environmental parameters including soil moisture, temper-
ature and humidity are also monitored using the capacitive
soil sensor and the DHT11. The ESP32 decodes the DHT11’s
40-bit data frame to obtain temperature and humidity val-
ues, which are used to characterize microclimatic conditions
and identify periods of extreme dryness that could influence
irrigation demand. The float sensor is again used here to
continuously check irrigation water availability.

For farm safety, an IR flame detection system is included.
The IR module is tuned to the 760–1100 nm spectral band,
which corresponds to the characteristic infrared emissions
of open flames. To avoid false alarms caused by brief IR
reflections or sunlight flashes, temporal filtering is applied: the
system only triggers an alert when the IR sensor maintains a
high signal for a consistent duration rather than reacting to a
single short spike.

Additional security functionality is provided through a laser-
based intrusion detection system composed of a laser pointer
aligned with a photoresistor. Any interruption of the beam
indicates potential animal or human intrusion, which is logged
by the ESP32. When an intrusion is detected or when triggered
the system activates a flashing LED and buzzer to produce
light and sound deterrence, helping protect the field.

All sensor data from this module are coordinated by the
ESP32 and transmitted to a Node.js server over WebSockets,
enabling real-time visualization and continuous environmental
awareness throughout the farm which is shown in Fig 4

C. AI-Based Plant Disease Detection Module

This system focuses on image-based plant disease detection
using deep learning models, with particular emphasis on
model generalization, inference efficiency and deployment
suitability for agricultural environments.

Fig. 4: Control features and Dashboard

1) Dataset and Preprocessing: The experiments is con-
ducted using the publicly available New Plant Diseases
Dataset. The dataset contains images of healthy and diseased
plant leaves across 38 classes. A total of 63,266 images are
used for model training, while 17,572 images are reserved as
an independent test set to evaluate generalization performance.
From the training data, 10% of the samples are further sepa-
rated as a validation set to monitor performance during training
and prevent overfitting. This data split ensures a sufficiently
large and diverse test set, enabling a more reliable assessment
of real-world performance.

All images are resized to 224 × 224 pixels. To
mitigate overfitting and improve model generalization,
data augmentation techniques such as random resized
cropping, horizontal flipping and color jittering is applied to
the training data. Validation and test datasets are processed
using deterministic resizing and normalization.

2) Model Architectures: Three convolutional neural net-
work architectures are evaluated as they represent state-of-the-
art convolutional neural network architectures that have been
widely and successfully applied to plant disease detection and
classification tasks [4].

• ResNet-50
• DenseNet-201
• MobileNet-V2
All models are initialized with ImageNet pre-trained

weights. The final classification layers is replaced to match
the number of plant disease classes. Fine-tuning is performed
on the augmented plant disease dataset.

3) Training Configuration: All models are trained for five
epochs using the Adam optimizer with a learning rate of 2×
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10−4 and a batch size of 32. Cross-entropy loss is used as the
optimization objective. Validation accuracy is computed after
each epoch and the model achieving the highest validation
accuracy is saved for final evaluation.

The fine-tuned hyperparameter values used for training the
model are summarized in Table I

TABLE I: Hyperparameter Configuration for Plant Disease
Detection

Hyperparameter Value

Input image size 224× 224

Batch size 32

Number of epochs 6

Optimizer Adam

learning rate 2× 10−4

Loss function Cross-Entropy Loss

4) Evaluation Metrics: Performance is evaluated using
classification accuracy on validation and test sets. In addition,
inference time per image and model complexity (number
of trainable parameters) are measured to assess deployment
feasibility. This multi-criteria evaluation ensures that accuracy
gains do not come at the cost of excessive computational
overhead.

Fig. 5: News and Disease Detection Visual

D. Agricultural News Classification Module

Agricultural news classification module is designed to auto-
matically collect farm headlines of big Nepali online newspa-
pers and focus on the delivery of updates on their agriculture to
the farmers with the aid of the mobile app. Due to the absence
of the publicly available dataset on agriculture-specific Nepali

news, a dataset is built by means of systematic web scraping.
The titles of the articles are picked up out of the major national
news websites such as The Kathmandu Post, The Himalayan
Times, My Republica, Nepali Times and The Rising Nepal.

The headlines gathered are then systematically put into
two of the categories of the supervised dataset by hand.
Agricultural, climate, weather, crop, market, irrigation and
farming policy headlines are classified under class 1. The label
of class 0 are used to the headlines that refer to other fields like
politics, entertainment, sports, technology and crime which
has been publicly released on the authors’ Kaggle profile to
support transparency and reproducibility of the research [17].
The final dataset had 270 labeled headlines which has 155 as
label 1 (related to agriculture) and 115 as label 0 which is
shown in Fig 6

0 1
Class

0

20

40

60

80

100

120

140

160

Co
un

t

115

155
Distribution of Target Classes

Fig. 6: Distribution of Data Labels

The textual preprocessing steps were done before training
the model that includs lowercasing, punctuations, stop-word
and tokenization. The embedding method Term Frequency-
Inverse Document Frequency (TF-IDF) is used to convert the
processed text into numerical vectors. It is especially helpful
with short, information-dense text (e.g. news titles) where
slight variations in language (e.g. harvest, monsoon, pesticide,
yield, weather alert, farmer subsidy) are highly predictive of
the agricultural sector [18] [19]. WordCloud of the all the news
title present in dataset is shown in Fig 7

In the case of the classification model, a Logistic Regression
classifier is used. The reason behind the selection of the
Logistic Regression is its robustness, interpretability and the
high efficacy in cases of sparse and high-dimensional text
representations based on the TF-IDF embeddings [20]. It is
computational light which is why it can be used in a system
that needs to process incoming news information on a daily
basis with minimum latency. The logistic regression model
is optimized in training the decision boundary separating the
agriculture related headlines (class 1) and the general news
headlines (class 0) and the best parameter choosen are given
in table II.
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WordCloud of Top Frequent Word

Fig. 7: Visualization of Most Common Words from News
Headlines

TABLE II: Hyperparameter Configuration for Logistic Regres-
sion

Parameter Best Value

C 10

Penalty L1

Solver liblinear

Cross-Validation Folds 5

Scoring Metric accuracy

The classifier deployed as an active inference service in
the backend server after training. The system uses automated
web scraping to update itself with new headlines of the same
news sources on a regular basis. All incoming headlines are
sent through the preprocessing pipeline, transformed into a
TF-IDF vector and sent to the logistic regression classifier. In
case the model detects the headline as one that is related to
agriculture, the system saves the headline and sends it to the
mobile application and display in screen shown in Fig. 5. The
unrelated headlines are thrown away.

E. Deployment and System Integration

The IoT sensing and control unit is deployed directly in the
agricultural field of size 1100 - 1500 square meter with careful
consideration of sensor placement, environmental exposure
and ease of maintenance [24]. The soil pH sensor is installed
in a ponded or standing-water zone where irrigation water
remains stagnant for a period of time, enabling continuous
monitoring of water acidity during irrigation cycles. The

soil moisture sensor is placed in the middle region of the
field, where water infiltration occurs gradually, providing a
realistic approximation of the average soil moisture condition
rather than localized saturation near the irrigation source. This
deployment strategy ensures that irrigation decisions are based
on representative field conditions [25].

The temperature and humidity sensor is mounted slightly
above ground level inside a hollow PVC enclosure to protect
it from rain, dust, and direct sunlight while allowing ambient
air to pass through. The enclosure consists of a 110 mm PVC
pipe with ventilation holes and a removable top lid, providing
a simple, low-cost, and weather-resistant housing. The ESP32
microcontroller and supporting electronics are installed inside
this PVC pipe, forming a compact and integrated field node.
An infrared (IR) sensor is mounted on the outer side of the
enclosure and oriented toward the open field to detect potential
fire or abnormal heat events.

Electrical wiring from the PVC enclosure is routed across
the field to connect the pH sensor, float sensor, and water
pump. The pH sensor cable and float sensor wire are laid
along the field surface and irrigation channel with protective
insulation to minimize damage from moisture, soil movement,
and farming activities and irrigation pump is powered though
external power source. The float sensor is installed inside the
irrigation channel to monitor water availability and prevent dry
running of the pump. The water pump itself is placed directly
within the irrigation channel and is connected to the control
unit through a motor driver powered by external power line for
pumping water, allowing automated irrigation based on sensor
readings and system logic.

Power management is designed to support long-term field
operation with minimal maintenance. A small solar panel is
mounted on the top lid of the PVC enclosure and is used to
charge a Li-ion battery pack housed inside the pipe. The power
subsystem consists of two 3.3 V with 3000-4000 mAh capacity
Li-ion cells with an integrated voltage regulation stage that
provides a stable 5 V supply to the ESP32 . To further reduce
energy consumption, the ESP32 operates using scheduled
wake-up cycles and deep-sleep modes, activating in around
every 2 hours during which data collection, transmission, and
sensing is done. In this cycle when ESP32 wakes up it connects
to WiFi, gathers sensor information, sends it and gathers input
commands at the same time for irrigation control. This low-
power design enables the system to operate for more than
a week without manual charging, even under limited solar
conditions. Recent work highlights the use of photovoltaic-
powered IoT sensor nodes for sustainable irrigation automation
in off-grid agricultural settings [25].

System integration is achieved through wireless communi-
cation between the field node and a mobile application using
WebSocket-based data transfer over Wi-Fi. Although Wi-Fi
connectivity is temporarily made available in the field for real-
time monitoring, the system architecture is designed to support
future replacement with LoRa-based communication modules
deployed at both the field and farmer’s home for long-range,
low-power data transmission. Beyond sensor monitoring and
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irrigation automation, the mobile application integrates addi-
tional farm management features such as camera-based plant
leaf disease detection, expense tracking for cultivation inputs,
and classification of agriculture-related news. The combination
of robust field deployment, efficient power management, and
integrated digital services makes the proposed system effec-
tive, low-cost, and practical for adoption by farmers.

Fig. 8: Weather Forecasting and Farm Management

IV. RESULTS AND DISCUSSION

The findings of both IoT and AI systems are explained
below, focusing on energy efficiency and practical implemen-
tation in agricultural conditions.

A. Energy Efficiency and Deployment Constraints

To accomplish high energy efficiency when used in constant
field deployment, the deployed IoT node is run on the basis of
periodic wake-up and deep-sleep operation. In the active mode,
the ESP32 uses about 120-180 mA to drive the soil moisture
sensor, pH sensor interface, DHT11 sensor, IR sensor, and float
sensor and send the data to the mobile application via Wi-Fi
connection.The water pump is powered by external power line
to the motor driver. The period of each active cycle after wake-
up is about 30-50 seconds. In the deep-sleep mode, the ESP32
power consumption is minimal and about 40-60 micro ampere
when all sensors are turned off. The average system current
consumption of 8-12 mA is attained with a constant wake-up
time of 2 hours, this is a balance between the frequency of
monitoring and power use with 2 hours not influencing the
accuracy of the irrigation decision.

Besides energy efficiency, the spatial coverage of the sens-
ing node dictates its applicability in the actual implementation
of farm deployment. The existing system is in the form of a
single-point monitoring unit, and as such it does not present

distributed measures rather approximates of the average field
conditions. Having the soil moisture sensor at a representative
mid-field position and the pH sensor placed inside the irriga-
tion water channel, the system could effectively be used to
measure the agricultural plots in the area of about 1100 -1500
square meter when the soil was uniform and the irrigation
water was uniform. This is suitable coverage in small size
farms usually found in the rural farming context.

The power system comprising of two 3.3 V Li-ion battery
and small solar cell, on which under normal day-light, the
solar-charging made up the daily energy usage, thus allowing
the long-term continuous functioning of the power system
without human intercession of up to 15-20 days under normal
day-light conditions. The current deployment is supported by
Wi-Fi communication to facilitate real-time WebSocket-based
data transmission.

In system integration terms, the time lag in communica-
tion between sensor data collection at the ESP32 and data
visualisation in the mobile application is always low. The
mean end-to-end latency, sensor sampling time, data packet
assembly, WebSocket transmission, backend processing, and
mobile application display is between 130 and 180 ms when
Wi-Fi conditions are stable. Such latency is good enough to
make near real-time monitoring and timely irrigation feedback,
which makes soon the conditions of the sensed fields to be
presented promptly in the user interface without impacting
decision-making or responsiveness of control. In general,
the measured cost, power consumption, communication, and
stability of the operation of the system prove that the proposed
system is suitable to be used in practice on farms and to be
operated in the everyday working conditions of real farms.

B. Plant Disease Detection Accuracy

To ensure a deployment-oriented evaluation, multiple
deep learning models like ResNet-50, DenseNet-201 and
MobileNet-V2 are comparatively analyzed using three key
criteria: classification accuracy, inference time and model com-
plexity. Based on the combined findings from these metrics,
the final model selection is made by balancing predictive
performance with computational efficiency.

1) Classification Performance: Table III summarizes the
final test accuracy achieved by the evaluated models.

TABLE III: Classification Accuracy Comparison of Evaluated
Models on the Test Dataset

Model Test Accuracy (%)

ResNet-50 98.77

DenseNet-201 99.23

MobileNet-V2 98.94

DenseNet-201 achieved the highest accuracy; however, the
performance difference among the three models was marginal
(less than 0.3%). This indicates that all models are capable
of learning discriminative plant disease features effectively.

Shah et al., An Integrated System of IoT-based Agriculture, Disease Detection and News Classification

Proceedings of International Conference on Innovation in Computing, Science, Engineering and Technology 2025 Page 137



2) Inference Time Analysis: Inference time is critical for
real-time agricultural applications. Figure 9 illustrates the av-
erage inference time per image for each model. MobileNet-V2
achieved the fastest inference (1.05 ms/image), significantly
outperforming ResNet-50 and DenseNet-201. This result high-
lights the suitability of lightweight architectures for time-
sensitive agricultural decision-making.
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Fig. 9: Average inference time per image for all models

3) Model Complexity: Figure 10 compares the number of
trainable parameters across models. MobileNet-V2 required
only 2.27 million parameters, compared to 23.59 million for
ResNet-50 and 18.17 million for DenseNet-201. Reduced
model complexity translates to lower memory usage and
energy consumption, which is essential for edge and mobile
deployment.
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Fig. 10: Comparison of model complexity in terms of the
number of trainable parameters

4) Model Selection Justification: Although DenseNet-201
achieved the highest accuracy, MobileNet-V2 is selected as
the final model due to the following reasons:

• Low inference time, enabling real-time disease detection.

• Low model complexity, reducing storage and computa-
tional requirements.

• Minimal accuracy trade-off, with less than 0.29% reduc-
tion compared to the best-performing model.

These characteristics are especially important in agricultural
scenarios, where disease detection systems are often deployed
on mobile devices or edge hardware with limited compu-
tational resources and power availability. Prior studies have
also emphasized that lightweight models are more suitable for
precision agriculture and field-level decision support systems
[21].

Overall, the results demonstrate that MobileNet-V2 provides
the best balance between accuracy, efficiency and practicality
making it an appropriate choice for deployment in smart
agriculture systems.

C. News Classification Performance Results

The agricultural news classification module carried out
well on the annotated Nepali news headline dataset. The
system performed well with high accuracy and unanimous
class-dependent discrimination of agriculture-related and non-
agriculture headlines using TF-IDF embeddings and a Logistic
Regression classifier. The model had an accuracy of 0.9630,
precision of 0.9653, recall of 0.9630 and an F1-score of
0.9628, which is a good balance of both classes. These findings
indicate that the classifier is very useful in terms of detecting
agricultural contents with the lowest false positives and false
negatives. The confusion matrix attached separately further
attests the high prediction power of the model, as it will be
suitable to be incorporated into the pipeline of real-time news
filtering employed by the mobile application. A confusion
matrix is created to visualize the performance which is shown
in Fig 11
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D. Limitations of the System
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unreliable  or  inexistent  Internet  connectivity.  Resilience 
could  be  improved  by  adding  alternative  communication 



V. CONCLUSION

The current paper introduces a single architecture of an
IoT-AI-driven smart agriculture system that combines real-
time reading of environmental conditions, automatic control
of irrigation, identifying the occurrence of plant disea A
comparative evaluation of deep and lightweight CNN models
demonstrated that while high accuracy is achievable, inference
latency and model complexity are critical factors for practical
field deployment. MobileNet-V2 is used as the most appro-
priate model based on this finding because it has low infer-
ence time and a small architecture. On the whole, the given
system has solved the major gaps between the performance
of laboratory-level performance and the actual needs of the
farming sector, making it a practical and scalable solution for
resource-constrained farming environments.

[10] Ashutus Singha, Hira Lal Gope 2025. Integrating IoT-Based Smart
Irrigation Systems to Optimize Crop Yield and Water Manage-
ment for Sustainable Agriculture. In Proceedings of the 3rd Inter-
national Conference on Computing Advancements (ICCA ’24). As-
sociation for Computing Machinery, New York, NY, USA, 123–130.
https://doi.org/10.1145/3723178.3723195

[11] Dafonte, J., González, M. Á., Comesaña, E., Teijeiro, M. T., Cancela,
J. J. (2024). Soil Water Status Monitoring System with Proximal Low-
Cost Sensors and LoRa Technology for Smart Water Irrigation in Woody
Crops. Sensors, 24(24), 8104. https://doi.org/10.3390/s24248104

[12] Hinojosa-Meza, R., Olvera-Gonzalez (2022). Cost-Effective and
Portable Instrumentation to Enable Accurate pH Measurements for
Global Industry 4.0 and Vertical Farming Applications. Applied Sci-
ences, 12(14), 7038. https://doi.org/10.3390/app12147038

[13] Sheneamer, A. (2024, November). ”New Plant Diseases Dataset”
[Data set]. Kaggle. https://www.kaggle.com/datasets/vipoooool/new-
plant-diseases-dataset
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protocols  such  as  the  GSM or  LoRaWAN.  The  accuracy 
should  be  maintained  at  long-term  levels  by  periodical 
recalibration. Multiple sensor probe can be used for further 
increasing  the  accuracy  of  data  readings.  AI  disease 
detection  model  is  constrained  by  its  training  set.  It  can 
confuse the situation with a region-specific disease that is 
not  included  in  the  data  set  and  may  not  fully  reflect 
performance  under  diverse  real-field  conditions  such  as 
varying lighting, occlusion on background noise. The news 
classification  module is trained on a relatively small dataset, 
potentially  limiting  its  generalization  to  broader  news 
sources and emerging topics.
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