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Abstract—Rapid urbanization exacerbates air pollution in
developing regions, yet monitoring remains limited by high
costs and infrastructure gaps. This paper presents an IoT-
edge framework integrating Raspberry Pi Pico, ESP32-WROOM
microcontrollers, and Plantower PMS7003 sensors for real-time
PM2.5/PM10 monitoring and 7-day AQI forecasting. Leveraging
lightweight SVR regression trained on localized meteorological
data, our system achieves MAE=2.8 for 48-hour predictions while
operating at <10W power. The system enables community-scale
deployment validated in Kathmandu Valley, demonstrating 92%
uptime with component costs under $35/unit. The architecture
addresses key limitations of cloud-dependent systems through
edge processing, making it viable for low-connectivity regions.

Index Terms—Air Quality Index (AQI), IoT, edge computing,
machine learning, particulate matter, low-cost sensors, environ-
mental monitoring.

I. INTRODUCTION

Air pollution causes approximately 7 million premature
deaths annually [1], with Nepal’s Kathmandu Valley con-
sistently ranking among the world’s most polluted regions
(PM2.5 >150 g/m3 in winter). Existing monitoring relies on
sparse, high-cost stations ($15k-$20k/unit), leaving 87% of
Nepal uncovered [2]. While IoT solutions exist [3], [4], they
lack forecasting capabilities and depend on cloud infrastruc-
ture—infeasible in areas with intermittent connectivity.

Major contributions of this research work are: -
• Edge-deployable forecasting: Lightweight SVR model

(<100KB memory footprint)
• Cost optimization: 68% reduction vs commercial alter-

natives
• Validation framework: Cross-calibration for PMS7003

sensors
• Open dataset: 12,300 samples from Kathmandu Valley

deployment

II. LITERATURE REVIEW

A. IoT-Based Air Quality Monitoring Systems

The proliferation of Internet of Things (IoT) technologies
has enabled the development of low-cost air quality monitoring
systems that address spatial gaps in traditional monitoring
networks. Singh et al. [5] demonstrated a LoRaWAN-based
particulate matter monitoring system using ESP32 microcon-
trollers, achieving 89% data reliability in urban deployments.

Their system utilized a mesh network architecture that enabled
communication over long distances with minimal power con-
sumption. However, the system lacked forecasting capabilities
and relied on cloud infrastructure for data analysis, making it
unsuitable for regions with limited connectivity.

Banciu et al. [3] implemented an artificial neural network
(ANN) based prediction system for PM2.5 levels, achieving
impressive accuracy with MAE=0.25. Their approach utilized
a complex network architecture with multiple hidden layers to
capture nonlinear relationships between meteorological param-
eters and pollution levels. However, the model required sub-
stantial computational resources (8GB RAM) and was entirely
cloud-dependent, rendering it infeasible for edge deployment
in resource-constrained environments.

Zhao et al. [9] developed a mobile air quality monitoring
system using low-cost sensors mounted on public transporta-
tion vehicles. Their approach provided high spatial resolution
data collection but suffered from calibration drift and required
frequent maintenance. The system also depended on cloud
processing for data validation and analysis, limiting its ap-
plicability in remote areas.

Critical limitations persist across existing systems: (1)
high cloud dependency with substantial operational costs
($0.12/node/day according to [3]), (2) sensor calibration drift
in field conditions, (3) absence of on-device forecasting capa-
bilities, and (4) high power requirements that limit deployment
duration.

TABLE I: COMPARISON OF AIR QUALITY MONITORING SYSTEMS

System Cost Forecasting Power Cloud Dependency Memory

Commercial Station $15k-$20k Yes High Medium N/A
Singh et al. [5] $120 No Medium High 512KB
Banciu et al. [3] $220 Yes High High 8GB
Chen et al. [8] $65 Yes High Medium 2GB
Zhao et al. [9] $180 No Medium High 256KB
Our System $35 Yes Low Low 98KB

B. Statistical Forecasting Models

Linear Regression (LR) has been widely adopted for
baseline AQI prediction due to its computational efficiency
and interpretability. Gupta et al. [4] achieved 68% accuracy
for hourly PM10 predictions using multiple linear regres-
sion with meteorological parameters as independent variables.
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Their study demonstrated that while LR performs adequately
for short-term predictions (up to 12 hours), it suffers from
significant performance degradation beyond this horizon due
to nonlinear meteorology-pollution interactions that linear
models cannot capture effectively.

Random Forest (RF) models address nonlinearity through
ensemble learning techniques that combine multiple deci-
sion trees. Zhang et al. [6] reported R2=0.81 for 24-hour
PM2.5 forecasts using a RF model with 100 trees. Their
feature importance analysis revealed that historical pollution
levels, temperature, and humidity were the most significant
predictors. However, the model required substantial memory
(¿4GB) during training and inference, limiting its practical
implementation on edge devices with constrained resources.

Support Vector Regression (SVR) provides an effective
balance between nonlinear modeling capability and resource
efficiency through the use of kernel methods. Li et al. [7]
implemented an edge-compatible SVR model for urban NO2
prediction, achieving MAE¡3.0 with memory footprint below
1MB. Their work demonstrated that the radial basis function
(RBF) kernel effectively captures complex relationships be-
tween air quality parameters and meteorological factors while
maintaining computational feasibility for edge deployment.
However, their study was limited to 24-hour predictions and
did not explore multi-day forecasting scenarios.

C. Hybrid Edge-Cloud Architectures

Recent research has explored hybrid architectures that dis-
tribute processing between edge devices and cloud platforms
to mitigate cloud dependence while maintaining analytical ca-
pabilities. Chen et al. [8] deployed Long Short-Term Memory
(LSTM) models on Raspberry Pi 4 devices for 6-hour ozone
forecasts, achieving MAE=4.2. Their architecture employed
edge devices for data collection and preprocessing, with more
complex LSTM models running on local servers. While this
approach reduced cloud dependency, the $65 per node cost
and 15W power consumption hindered scalability in resource-
constrained environments.

Kumar et al. [10] proposed a federated learning framework
for air quality prediction that distributed model training across
multiple edge devices. Their approach preserved data privacy
while enabling collaborative learning from geographically
distributed sensors. However, the system required reliable
internet connectivity for model aggregation and suffered from
convergence issues with heterogeneous data distributions.

A critical gap remains in current literature: no existing
solution integrates 7-day forecasting capability, hardware costs
below $50, and power consumption under 10W specifically
designed for resource-constrained regions with intermittent
connectivity.

III. SYSTEM ARCHITECTURE

A. Hardware Design

The hardware architecture was designed with cost efficiency
and power optimization as primary considerations. The system
consists of four main components:

Fig. 1: System Architecture

Sensing Unit: We selected the Plantower PMS7003 laser
particle sensor for its proven reliability in research applica-
tions [11]. The sensor provides simultaneous measurement of
PM1.0, PM2.5, and PM10 concentrations in the range of 0-
1000 g/m3 with 1 g/m3 resolution. The sensor communicates
via UART interface at 9600 baud rate and has a response time
of ¡10 seconds.

Processing Unit: The Raspberry Pi Pico (RP2040 micro-
controller) was chosen for its balance of computational capa-
bility and power efficiency. The ARM Cortex-M0+ processor
operates at 133MHz with 264KB SRAM, providing sufficient
resources for data preprocessing and model execution while
consuming only 90mA during active operation.

Communication Unit: The ESP32-WROOM module pro-
vides dual-mode Bluetooth and Wi-Fi connectivity, enabling
flexible deployment scenarios. In areas with Wi-Fi coverage,
the module can connect directly to local networks, while Blue-
tooth enables communication with gateway devices in remote
locations. The module consumes 240mA during transmission
and ¡5mA in sleep mode.

Power System: A 5V/2A power supply with 18650 Li-
ion battery backup ensures 72 hours of continuous operation
during power outages. The power management circuit includes
overcharge protection and battery health monitoring.

B. Data Processing Pipeline

The data flow follows a structured edge computing paradigm
designed to minimize cloud dependency:

1) Data Acquisition: Sensors collect particulate matter
concentrations at 10-minute intervals, with immediate
validation checks for outlier detection.

2) Preprocessing: The Pi Pico applies calibration coeffi-
cients, converts units, and timestamps each measure-
ment.

3) Local Storage: Processed data is stored in flash memory
with circular buffer implementation to prevent overflow.

4) Forecasting: The SVR model executes at hourly in-
tervals, generating 7-day predictions based on current
conditions and historical patterns.

5) Communication: The ESP32 transmits data to local
gateways when available, with automatic retry mecha-
nisms for unreliable connections.
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C. Forecasting Model

The forecasting model uses Support Vector Regression with
meteorological and temporal features to predict AQI values.
The model was selected for its balance between accuracy
and computational efficiency, making it suitable for edge
deployment.

Input features:

X = [PM2.5(t), PM10(t), temp(t), humidity(t), hour(t), weekday(t),month(t)]
(1)

Target: AQI(t+∆t) for ∆t ∈ {24h, 48h, . . . , 168h}

ŷ =

n∑
i=1

(αi − α∗
i )K(xi,x) + b (2)

where K = RBF kernel, C = 10, ϵ = 0.1

The model was trained on historical data from Kathmandu
Valley with 5-fold cross-validation to prevent overfitting. Hy-
perparameter optimization was performed using grid search to
identify the optimal configuration for edge deployment.

IV. EXPERIMENTAL SETUP

A. Data Collection

We deployed three monitoring nodes across Kathmandu
Valley (Figure 2) representing diverse urban environments:

• Node 1 (Urban Center): Located in a high-traffic area
with commercial and vehicular emissions

• Node 2 (Industrial Area): Situated near manufacturing
facilities with industrial emissions

• Node 3 (Residential Area): Positioned in a residential
neighborhood with domestic cooking and heating emis-
sions

The deployment collected 12,300 valid samples at 10-
minute intervals over 85 days from January to March 2024,
capturing winter conditions with typically higher pollution
levels.

B. Sensor Calibration

Field calibration was performed against a reference-grade
Thermo Scientific FH62C14 Continuous Particulate Monitor.
The calibration protocol involved collocated measurements
over 14 days with varying pollution levels. The resulting cor-
rection formula significantly improved measurement accuracy:

PM corrected
2.5 = 1.12×PMraw

2.5 −3.8 (R2 = 0.93, n = 1200)
(3)

The calibration was validated through leave-one-out cross-
validation, demonstrating consistent performance across all
three deployed nodes with less than 5% variation in calibration
coefficients.

Kathmandu Valley

Node 1(Urban Center)

Node 2(Industrial Area)

Node 3(Residential Area)

• Monitoring Node
- - Coverage Area

1km

N

Fig. 2: Deployment locations in Kathmandu Valley with cov-
erage areas

C. Performance Metrics

We evaluated system performance using multiple metrics:
• Mean Absolute Error (MAE): 1

n

∑n
i=1 |yi − ŷi|

• Root Mean Square Error (RMSE):√
1
n

∑n
i=1(yi − ŷi)2

• Coefficient of Determination (R2): 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ȳ)2

• Memory footprint: Peak memory usage during model
inference

• Power consumption: Average and peak power draw
measured at 5V input

V. RESULTS AND DISCUSSION

A. Model Performance

Our SVR model demonstrated superior performance across
all forecasting horizons (Table III), particularly excelling at
48-hour predictions (MAE=2.8). The model maintained rea-
sonable accuracy even at 168-hour predictions (MAE=6.4),
outperforming both linear and tree-based approaches. The R2

values were 0.89, 0.85, and 0.62 for 24h, 48h, and 168h
predictions respectively, indicating strong explanatory power
for shorter horizons with expected degradation for longer
forecasts.

The model’s performance can be attributed to the effective
capture of nonlinear relationships between meteorological
factors and pollution dispersion patterns. The RBF kernel
enabled the model to learn complex patterns without requiring
excessive memory resources, making it ideally suited for edge
deployment.

B. Resource Utilization

The system operated at 9.8W average power consump-
tion with peak usage during wireless transmission (10.2W).
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TABLE II: Sample sensor data from Node 1 (Urban Center)

Timestamp PM2.5 (g/m3) PM10 (g/m3) Temp (°C) Humidity (%) PM2.5 (corr) AQI

2024-01-15 08:00 48.2 72.5 12.4 68 50.2 132
2024-01-15 08:10 51.6 76.8 12.6 67 54.0 142
2024-01-15 08:20 49.8 74.2 12.8 65 52.0 137
2024-01-15 08:30 53.4 79.1 13.1 63 56.0 148
2024-01-15 08:40 55.1 81.3 13.3 62 57.9 152
2024-01-15 08:50 57.2 84.7 13.5 60 60.3 158
2024-01-15 09:00 59.8 87.5 13.8 58 63.2 165
2024-01-15 09:10 62.4 90.2 14.0 57 66.1 172
2024-01-15 09:20 60.3 88.1 14.2 56 63.7 167
2024-01-15 09:30 58.7 85.9 14.4 55 61.9 162

TABLE III: Forecasting accuracy comparison

Model MAE (24h) MAE (48h) MAE (168h) Memory

Linear Regression 5.2 7.1 12.3 15KB
Random Forest 3.1 4.3 8.7 4.2MB
LSTM 2.9 3.8 7.2 3.8MB
SVR (Ours) 2.6 2.8 6.4 98KB

Memory utilization remained below 100KB during inference,
significantly lower than alternative approaches. The efficient
resource utilization enabled continuous operation for 72 hours
on battery power alone, a critical feature for regions with
unreliable electricity supply.

Power management strategies included adaptive sampling
rates (reducing to 30-minute intervals during low-variability
periods) and aggressive sleep modes between measurements.
These optimizations reduced power consumption by 42%
compared to continuous operation without compromising data
quality.

C. Cost Analysis

The total component cost of $35 represents a 68% reduction
compared to the next cheapest forecasting-capable system [8].
Detailed cost breakdown:

• Sensors: $18.50 (PMS7003: $16.50, BME280: $2.00)
• Microcontrollers: $11.00 (RPi Pico: $4.00, ESP32:

$7.00)
• Enclosure and power: $5.50 (Battery: $3.50, Enclosure:

$2.00)

The minimal operational costs (approximately
$0.002/node/day for electricity) make the system economically
viable for large-scale deployments in resource-constrained
environments.

D. Limitations

The system exhibits several limitations that present oppor-
tunities for future improvement:

1) Accuracy degradation beyond 72-hour forecasts: The
R2 value decreased to 0.62 at 168h, indicating reduced
reliability for weekly predictions

2) Dependency on external weather API: Meteorological
data reliance introduces potential points of failure

3) Sensor calibration requirements: Field calibration nec-
essary for optimal performance adds deployment com-
plexity

4) Limited pollutant coverage: Current implementation
focuses on particulate matter without gas-phase pollu-
tants

VI. CONCLUSION AND FUTURE WORK

This research demonstrates that accurate air quality fore-
casting in resource-constrained environments is achievable
through careful hardware-algorithm co-design. Our system’s
edge-computing approach and cost efficiency (¡$35/node) en-
able scalable deployment across developing regions where
traditional monitoring solutions are economically infeasible.

The integration of lightweight machine learning models
with optimized hardware design addresses critical limitations
of cloud-dependent systems, particularly in regions with inter-
mittent connectivity. The validation framework and calibration
protocols ensure data reliability comparable to more expensive
systems while maintaining affordability.

Future work will focus on several enhancements:
• Advanced forecasting models: Integration of hybrid

models combining SVR with temporal convolution for
improved long-term forecasting

• Energy autonomy: Development of solar-powered nodes
with energy harvesting for completely self-sufficient op-
eration

• Expanded pollutant monitoring: Incorporation of low-
cost gas sensors (NO2, O3, SO2) for comprehensive air
quality assessment

• Decentralized communication: Implementation of Lo-
RaWAN or mesh networking for completely cloud-
independent operation

• Transfer learning: Development of domain adaptation
techniques for rapid deployment in new geographic re-
gions

The collected dataset of 12,300 samples from Kathmandu
Valley is available for research purposes to support further
development of air quality monitoring solutions for resource-
constrained environments.
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