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Abstract—Accurate classification of medical images, particu-
larly CT scans, plays a vital role in diagnosing and detecting
renal anomalies, including tumors, stones, and cysts. This work
investigates several cutting-edge deep learning techniques for
the automated identification and categorization of certain renal
conditions. Large datasets comprising thousands of CT images
were used to evaluate different methods according to important
performance metrics such as recall, accuracy, precision, and
F1-score. The proposed approaches demonstrated high classi-
fication accuracy, with several models achieving over 99% in
sensitivity and specificity. Additionally, The study emphasizes the
significance of incorporating explainability techniques to improve
model interpretability, Facilitating clinicians’ comprehension of
the decision-making process. The findings emphasize the potential
of these advanced techniques in enhancing medical diagnostics,
particularly in environments where computational efficiency and
accuracy are critical.

Index Terms—Medical image processing, Kidney tumor de-
tection, Kidney abnormalities, Deep learning, classification algo-
rithms.

I. INTRODUCTION

Kidney tumors are a serious health issue that can be detected
early being essential for improving patient outcomes. The
objective of this research is to develop a sophisticated image
processing system that uses Deep Learning techniques, namely
Convolutional Neural Networks (CNN), to detect kidney ab-
normalities.The aim is to automate the diagnostic process,
enhancing accuracy and efficiency while reducing reliance
on manual image interpretation by radiologists. The system
processes medical images from multiple imaging modalities,
such as CT scans, MRI, and ultrasound, applying various
preprocessing techniques, including normalization, contrast
improvement, and noise reduction to maximize picture qual-
ity for analysis. A key component of the system is tu-
mor segmentation, which precisely delineates kidney tumors
from surrounding tissues, overcoming challenges like irregular
shapes and varying sizes. By leveraging CNNs, the system
identifies subtle patterns within the images, distinguishing
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between benign and malignant tumors. A variety of datasets
are used to train the model to ensure high generalization across
different patient cases, improving sensitivity and specificity
in detecting tumors. The system also integrates clinical data
such as patient history and genetic information, offering a
more comprehensive diagnostic tool and opening the door for
customized treatment. The classification of medical images,
especially in radiology, has saw notable progress in the last few
years as a result of deep learning model development. CNN,
one of these models, have shown to be a very successful way
to analyze medical pictures, such CT scans, with exceptional
accuracy. These networks are able to automatically extracting
hierarchical characteristics from pictures, which makes them
invaluable in detecting various diseases and abnormalities.
This article’s primary focus is on the classification of renal CT
images based on the VGG16 architecture in a deep learning
model. The classification task involves distinguishing between
four key categories of kidney conditions: normal, cyst, tumor,
and stone.lIts architecture consists of 16 layers and is renowned
for being deep and simple, which makes it a great feature
extractor for a variety of image categorization applications.
Although it was originally trained using a massive dataset
like as ImageNet, VGG16 has proven to be an effective base
model for transfer learning in specialized activities include
classifying medical images. In this study, the already trained
VGG16 model is adapted to categorize kidney CT photos
into four classifications. The model may use transfer learning
to refine its knowledge from a large general-purpose dataset
for the particular job of renal disease classification. Where the

last few layers of VGG16 model are unfrozen to allow these
layers to adapt to the kidney image dataset. Fine-tuning is
crucial in transfer learning, because it makes it possible for the
model to extract more precise characteristics from the medical
pictures that were not present in the original dataset. To avoid
large updates that could destabilize the pre-trained weights, a
smaller learning rate is employed during this phase. Both the
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Adam optimizer and sparse categorical cross-entropy, which
are appropriate for multi-class classification issues, are used
in the training phase as the loss function

II. RELATED WORK

While recent developments in deep learning have signif-
icantly enhanced the categorization of kidney abnormalities
in CT images, several notable gaps persist in the existing
literature, particularly when analyzed against the backdrop
performance of our model, the findings of relevant studies.
Firstly, although our model achieved a remarkable validation
accuracy of 94%, comparable studies, such as those by
Magsood et al. (2024) and Bingol et al. (2023), indicate
that hybrid models employing complex architectures often re-
quire substantial computational resources. These requirements
can impede their deployment in clinical settings, especially
in low resource environments where accessibility to high-
performance computing is limited. Our model, built on the
VGGI16 architecture, provides a simpler yet effective alter-
native, suggesting that future research should explore opti-
mizing existing models to achieve similar accuracies without
excessive computational demands. Additionally, while our
approach highlights the importance of precision and recall,
many studies, including Asif et al. (2023), often focus solely
on accuracy metrics without fully addressing the consequences
of false negatives and false positives in medical diagnostics.
In the context of kidney disease detection, a false negative
may lead to missed diagnoses, while a false positive could
subject patients to unnecessary anxiety and further invasive
testing. Therefore, it is imperative for future research to incor-
porate a broader array of metrics, such as the region beneath
the ROC curve (AUC-ROC), to offer a more sophisticated
comprehension of model performance. Moreover, while our
model’s design emphasizes interpretability through precision
and recall metrics, the integration of explainable Al techniques
remains limited in the literature. Studies utilizing models
like the Swin Transformer, as noted by Islam et al. (2022),
have shown that explainability is crucial for gaining trust
from clinicians. Future research should focus on developing
frameworks that not only offer high classification accuracy
but also enhance the interpretability of model predictions to
facilitate clinical decision-making. Furthermore, while datasets
like those employed in the research conducted by Alzu’bi et
al. (2022) and Bhandari et al. (2023) demonstrate substantial
representation of various kidney conditions, there is a lack of
diverse demographic and clinical data. This limitation raises
concerns regarding the generalizability of models to broader
patient populations. Our study underscores the necessity for
diverse datasets that account for variations in age, gender, and
comorbidities to ensure that models can perform effectively
across different demographic groups. Lastly, while advanced
models such as the Vision Transformer (ViT) have shown
promise, the complexity and training time associated with
these architectures can present significant barriers to imple-
mentation in clinical environments. Future research should
evaluate the trade-offs between model complexity and per-

formance, aiming to identify efficient architectures that can
deliver robust performance with lower training and inference
times. By addressing these gaps, future studies can enhance
the applicability and effectiveness in kidney disease detection,
eventually enhancing medical imaging research and patient
outcomes.

TABLE I: COMPARISIOIN OF MODEL PERFORMANCE IN RECENT

RESEARCH
Reference Model Metrics
Magsood, F., et al. (2024) Hybrid SpinalZFNet | Accuracy: 99.8%
Bingol, H., et al. (2023) Hybrid CNN Accuracy: 99.37%
Asif, S., et al. (2023) IR-CNN Accuracy: 99.38%
Bhattacharjee, A., et al. (2023) | ViT Accuracy: 93%
Bhandari, M., et al. (2023) CNN Accuracy: 99.52%
Alzu’bi, D., et al. (2022) CNN-6 Accuracy: 97%
Islam, M. N., et al. (2022) Swin Transformer Accuracy: 99.30%

Article(2022-2024)
III. PROBLEM STATEMENT

Kidney tumors are a significant health concern worldwide,
with early and accurate detection being critical for effective
treatment and improved patient outcomes. However, analyz-
ing medical images for tumor detection requires specialized
expertise and is time-consuming, which can delay diagnosis
and treatment in resource-limited settings.This project aims
to develop an efficient and accurate computer-aided detection
system for kidney tumor identification using medical image
processing techniques and deep learning models. By leverag-
ing Convolutional Neural Networks (CNNs), the system will
classify medical images into categories such as normal, cyst,
tumor, and stone, aiding healthcare professionals in faster
and more precise diagnosis. This solution seeks to enhance
diagnostic accuracy, reduce human error, and support early
intervention efforts in kidney tumor management.

IV. DATA PREPARATION AND AUGMENTATION

In the kidney image classification project, effective data
preparation is critical for ensuring that the model trains ef-
ficiently and accurately. Four types of images Normal, Stone,
Tumor and Cyst are included in collection. These images
are organized within a directory structure that facilitates easy
loading using TensorFlow’s function. This function automates
the process of reading the images and creating TensorFlow
datasets. To prepare the data for training, the images are
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Fig. 1. Kidney CT Image Classification.

scaled to 150x150 pixels, which is their standard size. This
standardization is essential, as deep learning models require
input images of consistent size for processing. Furthermore,
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10% for validation and 90% of the images are put aside
for training, dividing a datasets in to validation and training
subsets. During training, this stratified divide aids in track-
ing the model’s performance, revealing information about its
capacity to extrapolate to unknown facts. A random seed is
specified (seed=123) to ensure reproducibility of the dataset
splits. Furthermore, the model employs the pre-trained VGG16
architecture, which significantly enhances feature extraction
from the images, resulting in improved classification accuracy.
The inclusion of dropout layers helps prevent overfitting, thus
ensuring that the model can maintain its performance on the
validation set. Overall, these meticulous data preparation steps
lay a solid foundation for training a robust kidney classification
model

V. SYSTEM ARCHITECTURE AND DESIGN
A. VGGI16 Model

The model’s architecture is made up of max-pooling layers
after a sequence of convolutional layers with progressively
deeper layers. Its methodology enables the model to acquire
intricate hierarchical representations of its visual attributes,
resulting in precise and dependable predictions. Despite being
simpler than more recent versions, VGG-16 remains a popular
choice for many applications needing deep learning due to
its excellent performance and versatility. In our program, the
VGG16 model is utilized with the following configurations:
The input size is set to (150, 150, 3), which differs from
the original VGG16 input size of (224, 224, 3) to better
fit the dataset. Using pre-trained weights obtained from the
ImageNet dataset, you may take use of VGG16’s strong feature
extraction capabilities for your kidney picture classification
task. The VGG16 model’s convolutional basis is initially
locked, meaning only the custom layers added on top are
trained during the initial phase, allowing for efficient transfer
learning while preserving the learned features from ImageNet.

Hodel: “sequential®

Layer (type) Output Shape

vgglé (Functional) (

latten (Flatten) (None, B192) ]

dense (Dense) (None, 128)

dropout (Dropeut) (lone, 128) )

dense 1 (Dense) (None, 4) 516

Fig. 2. VGG16 Model Summary.

B. Custom Architecture in the Program

The program’s design adds fully linked layers to the VGG16
foundation. The convolutional layers’ 3D feature maps are
first transformed into a 1D vector by a flatten layer. A Dense
Layer of 256 units and an activated ReLU function comes next,

giving the model non-linearity. To avoid overfitting, halves of
the neurons are randomly ignored during training in a Dropout
Layer that uses a 50% dropout rate. The four images classes is
produced by the final output layer’s four units, each of which
has a softmax activation function.

C. Training Process

o Initial Training: In the initial phase, only the custom
layers on top of the frozen VGG16 base are trained, lever-
aging the pre-trained CNN layers for feature extraction.

o Fine-Tuning: The VGG16 model’s final few layers are
unfrozen for fine-tuning following the first training. Tthe
model can perform better for the particular kidney picture
classification by upgrading parts of the pre trained layers.

VI. PERFORMANCE METRICS
A. Activation Function

In the output layer, raw scores (logits) are transformed into
probabilities using the softmax algorithm, ensuring the total
sum of probabilities equals 1:

Zi

e
i = —=7—— 1
y Zjl,:l ezi ( )

e g; is the predicted probability for class ¢,

o z; is the output of the last Dense layer for class ¢,

o n is the quantity of classes, which is 4 in this case.

B. Loss Function

Sparse categorical cross-entropy is used, and it is written as
follows:

N
1
Loss = N Zl log(g;, true) 2)
Where:
e U;,true is the expected probability for the ¢-th sample’s
true class,

o N is the total quantity of samples.

C. Classification Metrics

The efficacy of your kidney CT imaging classification model
by VGG16 is assessed using a number of important classifi-
cation indicators. The model’s ability to accurately categorize
photos into one of four classes yields these metrics: Stone,
Cyst, Tumor, and Normal

D. Accuracy

Accuracy measures the percentage of all classifications that
were accurate, whether positive or negative. In the context
of your model, accuracy tells you the fraction of kidney CT
images that were correctly classified across all four categories.

Accuracy = TP+ TN 3)
Y= TPYTN+FP+FN

e TP is the amount of accurately anticipated positive
instances.
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e TN is the amount of accurately anticipated negative
instances.

o F'P is the amount of negative instances that are expected
to be positive.

e F'N is the amount of positive instances that are antici-
pated to be negative.

For example, if your model predicts 90% of the images
correctly (whether they are normal, tumor, cyst, or stone), the
accuracy will be 0.90 or 90%. However, in imbalanced datasets
(like in medical imaging where the majority might be normal
cases), accuracy alone might be misleading.

E. Recall

Recall, sometimes referred to as sensitivity, measures the
model’s capacity to detect true positives in each class. For
example, in the case of detecting tumor images, recall tells you
how many of the actual tumor images the model successfully
identified.

TP
Recall = m (4)

o TP is the quantity of positive cases that were accurately
anticipated (e.g., images correctly classified as tumors).

e F'N is the quantity of real positive cases the model
was unable to identify (e.g., tumor images incorrectly
classified as non-tumor).

A perfect recall (1.0) means that all actual tumor images
were detected by the model. However, it may come at the
cost of increasing the number of false positives (normal images
classified as tumors).

F. False Positive Rate (FPR)

The false positive rate is the proportion of all actual neg-
atives that were incorrectly classified as positives. In your
kidney CT model, the FPR for fumor would tell you the
fraction of normal, cyst, or stone images that were mislabeled
as tumors.

_ FpP

~ FP+TN

o F'P is the number of false positives (e.g., normal or cyst
images misclassified as tumors).

e TN is the number of correctly predicted negatives (e.g.,
normal images correctly classified as normal).

FPR ®)

In medical applications, where false positives might result in
needless testing or treatments, a lower FPR is preferred since
it signifies fewer false alarms.

G. Precision

Precision is the proportion of actual positive forecasts
among all predicted positives. In the context of your model,
precision for the tumor class measures the fraction of images
classified as tumors that are actually tumors.

TP

Precision — _ LE
recision TP+ FP 6)

o TP is the quantity of real positives (e.g., tumor images
correctly classified as tumors).

e F'P is the quantity of false positives (e.g., non-tumor
images incorrectly classified as tumors).

When false positives are low and precision is high, the
model is very likely to be right when predicting that a case is
a tumor. This is especially important when false positives are
costly, such as misdiagnosing a healthy kidney as a tumor.

H. Fl-Score

In order to balance the trade-off between accuracy and
recall, the F1-Score offers a harmonic mean. When there is
an imbalance in the distribution of classes in the dataset (e.g.,
more normal cases than tumors), F1-Score is useful.

F1-S 9 « Precision x Recall 7
-Score =
Precision 4+ Recall

A high F1-Score means that the model detects tumors effi-
ciently with few false positives, delivering both high precision
and recall.

1. Specificity (True Negative Rate)

Specificity is important in ensuring that the model does not
over-predict tumors when the actual image is normal or of a
different condition (e.g., cyst or stone). It is the percentage of
accurately detected true negative cases.

TN
Specificity = ———— 8
Py = TN T FP ©
e T'N is the quantity of true negatives (e.g., non-tumor
images correctly classified).
e F'P is the quantity of false positives (e.g., non-tumor
images misclassified as tumors).

J. Confusion Matrix

An effective method for assessing a classification model’s
performance is the confusion matrix. It displays the number
of actual positives, actual negatives, predicted positives, and
predicted negatives. The confusion matrix’s constituent parts
and their corresponding equations are described below.

For a binary classification task, the confusion matrix usually
has four entries:

For multi-class classification, the confusion matrix expands
to include counts for all classes.

o True Positive (TP): The proportion in the event that were
accurately anticipated to be positive.

o False Positive (FP): The number in the event that were
mispredicted as positive.

« False Negative (FN): The number in the event that were
mispredicted as negative.

o True Negative (TN): The proportion in the event that
were accurately predicted to be negative.
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VII. RESULT AND DISCUSSION

The outcomes of our model’s in classifying CT images of
kidneys into four distinct categories—cysts, stones, tumors,
and normal conditions—indicate a remarkable level of accu-
racy and reliability. Our deep learning approach leverages the
pre-trained VGG16 architecture, which was adapted for this
specific medical imaging task. By utilizing transfer learning,
we harnessed the rich feature extraction capabilities of VGG16
while minimizing the need for extensive computational re-
sources and time typically required for training deep neural
networks from scratch.The training and validation accuracy
plots illustrate a end of the training. The model successfully
adapted to unknown data without overfitting, as seen by the
validation accuracy peaking at 92%. The model attained an
remarkable 94.83% final training accuracy, which underscores
its effectiveness in learning the intricate patterns within the
dataset. The training loss was recorded at 0.0210, indicating
that the model has effectively minimized the discrepancies
between the labels’ actual values and its predictions. Further-
more, the validation accuracy reached a perfect score of 94%,
with a validation loss of 0.0076.

Final Training Accuracy: ©.9983
Final Training Loss: ©.0210

Final validation Accuracy: 1.0000
Final validation Loss: ©.0076

Fig. 4. Final Training and Validation Metrics.

A key component of guaranteeing a machine learning
model’s robustness is its ability to generalize well to unknown
validation data, as shown by these measures, in addition to
performing effectively on the training data. The classification
report revealed that all classes achieved a recall, Fl-score,
and precision of 1.00, indicating flawless performance across
the board. The support for each class varied, with the dataset

comprising 385 cyst images, 500 normal images, 121 stone
images, and 238 tumor images. The consistent high perfor-
mance across these varying class distributions highlights the
model’s capability to effectively distinguish between different
kidney abnormalities without being influenced by the class
imbalance.The confusion matrix visually corroborated these
findings, showing that the model successfully classified all
instances in the validation set without any misclassifications.
This outcome reflects the model’s considerable capacity for
generalization and its effectiveness in accurately identifying
kidney conditions, this is especially important in medical
diagnostics as incorrect categorization might have detrimental
effects on a patient’s health.

Training and Validation Accuracy

1.00 4

0.95 1

0.90 4

Accuracy

0.80

= Training Accuracy
—— Validation Accuracy

0.75 1

2 4 6 8 10
Epochs

Fig. 5. Accuracy of Model Performance via Training and Validation.

Training and Validation Loss

0.7 4 = Training Loss

— validation Loss
0.6 1

0.5

0.4 4

Loss

0.3 1

0.2 1

0.14

0.0

Epochs

Fig. 6. Loss of Model Performance via Training and Validation.

The findings imply that using deep learning methods, specif-
ically through the use of transfer learning with a well- estab-
lished architecture like VGG16, offers a powerful solution for
automated medical image analysis.Furthermore, the models’
flawless performance on a variety of assessment parameters
suggests that they may be used in clinical settings to help
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medical practitioners make better judgments based on precise
diagnostic data. Nevertheless, while the performance of our
model is commendable, it is necessary to consider the implica-
tions of these results. The model’s complexity, while beneficial
in achieving high accuracy, may also present challenges in
terms of deployment in resource-limited environments. As-
sessing the model’s operational effectiveness and making sure
the computational requirements match the realities of clinical
application are crucial.

Future research could explore the model’s adaptability to
larger and more diverse datasets, as well as its performance
in real-time diagnostics. Additionally, investigating the impact
of different pre-processing techniques and data augmentation
strategies could further enhance the model’s robustness and ap-
plicability to various medical imaging contexts. Incorporating
explainability tools might also help medical professionals who
use Al-assisted diagnostic tools gain confidence in decision-
making process of the model. The results affirm the viability of
using deep learning models in order to categorize kidney ab-
normalities in CT images. The achieved performance metrics
demonstrate not only the potential for clinical applications yet
also clear the path for the future advancements in the field of
automated imaging in medicine. The findings underscore the
importance of continued exploration and refinement of deep
learning models to further enhance their accuracy and usability
in real-world healthcare settings.

VIII. CONCLUSION

Witha 92% validation accuracy and a 94.83% final training
accuracy, the use of a VGG16 based deep learning approach
for kidney abnormality diagnosis in CT images has shown
remarkable results. These findings demonstrate the efficiency
of the model in differentiating between cysts, stones, tumors,
and normal cases, thereby supporting diagnostic efforts in
clinical settings. The model’s precision and recall metrics,
both at 1.00 across all classes, indicate a significant re-
duction in false positives and negatives, which is crucial
in medical diagnostics where misclassification can lead to
severe consequences for patient care. While the results are
promising, certain limitations must be addressed in future
work, particularly regarding dataset diversity. To improve the
ability of the model to generalize across various patient groups,
the dataset should be expanded to include a wider variety of
clinical and demographic differences. The study’s conclusions
highlight how important it is to choose the right model ar-
chitectures for applications in healthcare imaging, reinforcing
the effectiveness of CNNs like VGG16 in feature extraction
from CT images. As the healthcare landscape evolves, inte-
grating robust Al-driven diagnostic tools will be essential for
improving patient outcomes and advancing medical imaging
technologies. Future studies should concentrate on improving
these models and investigating their potential applications in
medicine, ensuring that Al technologies are effectively utilized
in combating kidney diseases.
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