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Abstract—Modern web applications face increasingly sophis-
ticated threats that exploit application logic, API misconfigura-
tions, and behavioral patterns often missed by signature-based
defenses. While machine learning offers scalable detection, fully
autonomous systems lack transparency and may produce exces-
sive false positives or overblocking. In this paper, we introduce
SentinelX, a hybrid human-AI framework for real-time web
threat mitigation that integrates zero-trust policies, predictive
uncertainty, and explainable decision-making. SentinelX fuses
supervised classification and unsupervised anomaly detection
with dynamic trust scoring and SOAR-based response actions.
It incorporates SHAP/LIME explanations, human-in-the-loop
escalation, and an active learning loop to adapt to novel threats.
Evaluation on web traffic datasets and simulated attack scenarios
shows that SentinelX significantly improves detection precision,
reduces mean time to detect and respond, and minimizes analyst
workload compared to state-of-the-art baselines. The system
provides a practical, trustworthy blueprint for deploying safe
automation in modern security operations.

Index Terms—web application security, intrusion detection,
explainable Al, zero trust, human-in-the-loop, SOAR, anomaly
detection, active learning, cyber threat response

I. INTRODUCTION

Modern web applications operate in an increasingly hostile
digital environment. With the proliferation of dynamic con-
tent, APIs, and microservice-based backends, attackers now
exploit complex multi-step chains that often evade traditional
signature-based defenses. The risks have escalated beyond
isolated injection flaws or XSS vectors; adversaries routinely
exploit misconfigured cloud permissions, insecure authentica-
tion flows, and logic flaws invisible to static scanning. Industry
reports consistently rank web applications among the top
attack surfaces exploited in real-world breaches [1], [2].

Automated defenses such as Web Application Firewalls
(WAFs) and Intrusion Detection Systems (IDSs) have evolved,
incorporating machine learning to improve detection rates.
While these systems offer scalability, they struggle with
ambiguous behaviors, false positives, and adapting to novel
threats. False alarms overwhelm security analysts, while blind
automation risks blocking legitimate traffic or missing stealthy
attacks [3], [4]. As threats grow more sophisticated, the secu-
rity community increasingly advocates for integrating human
judgment into the decision-making loop [5].

This paper introduces SentinelX, a hybrid human—AlI frame-
work for real-time web threat mitigation. Unlike fully au-
tonomous detection pipelines, SentinelX emphasizes collab-
orative autonomy: Al handles the high-volume telemetry

stream, but high-impact decisions are subject to human val-
idation or policy thresholds. SentinelX fuses (i) behavioral
modeling of web requests, (ii) supervised and unsupervised
detection ensembles, (iii) predictive uncertainty scoring, and
(iv) explainability through model attribution (e.g., SHAP,
LIME) [6], [7]. It augments detection with zero-trust policy en-
forcement [8], [9] and automates containment actions through
Security Orchestration, Automation, and Response (SOAR)
playbooks [10], [11].

Our motivation is twofold. First, to improve detection pre-
cision while preserving transparency and human oversight in
cases of uncertainty. Second, to reduce Mean Time to Detect
(MTTD) and Mean Time to Respond (MTTR) through tiered,
context-aware actions. SentinelX dynamically calibrates its
trust in both users and its own model predictions, escalating
decisions only when confidence is low or impact is high. This
makes it suitable for deployments where security policies must
coexist with business continuity and regulatory compliance.

To evaluate SentinelX, we integrate its components into a
streaming web telemetry pipeline and benchmark it against
current state-of-the-art web anomaly detectors. The evaluation
includes detection accuracy, analyst effort reduction, inter-
pretability, and operational response metrics. The proposed
system contributes to the growing need for human-centered
cybersecurity tools that are adaptive, explainable, and aligned
with zero-trust and incident response best practices.

The rest of this paper is structured as follows. Section II
reviews related work in web intrusion detection, explainable
Al, and human—AI collaboration. Section III presents the
SentinelX system architecture and its major components. Sec-
tion IV details the operational methodology, including detec-
tion fusion, uncertainty estimation, and policy enforcement.
Section V reports experimental results and compares Sen-
tinel X against state-of-the-art methods. Section VI discusses
insights, limitations, and operational implications. Finally,
Section VII concludes the paper and outlines future directions.

II. RELATED WORK

This section reviews prior research along five thematic
areas: (1) web and application-layer intrusion detection, (2)
human—AlI collaboration in security operations, (3) explainable
Al for decision transparency, (4) federated and collaborative
intrusion detection, and (5) frameworks for trust, autonomy,
and human oversight. The discussion situates SentinelX within
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the broader research landscape and identifies the open chal-
lenges it addresses.

A. Intrusion Detection and Web Anomaly Detection

Intrusion detection has long been a cornerstone of cy-
bersecurity research. Traditional IDSs relied on signature or
rule-based matching to identify known attack patterns, but
such systems often fail to detect unseen or polymorphic
attacks [12]. The introduction of machine learning and deep
learning techniques has led to significant advances in pattern
recognition and anomaly detection across network and web
traffic [13], [3].

Khraisat et al. [12] provide a taxonomy of hybrid in-
trusion detection models, highlighting the trade-off between
detection accuracy and computational efficiency. More recent
work by Diaz-Verdejo et al. [14] specifically targets HTTP-
layer threats, identifying how subtle request manipulations,
abnormal sequence patterns, and timing variations can ex-
pose application vulnerabilities. Chua et al. [4] demonstrate
how Isolation Forests and autoencoders effectively identify
anomalies in web logs and request headers. However, these
systems typically function in a detect-and-alert paradigm,
lacking integrated, context-aware mitigation.

Despite progress in ML-based detection, operational chal-
lenges persist—imbalanced datasets, model drift, and poor
generalization to novel attacks remain unresolved [3]. Further-
more, conventional IDS architectures rarely incorporate real-
time human oversight or adaptive escalation logic. SentinelX
extends this body of work by unifying supervised and unsu-
pervised detection with graded automation, explainability, and
human decision feedback.

B. Human—Al Collaboration in Security Operations

Security operations centers (SOCs) face overwhelming alert
volumes and increasing attack complexity. While automation
and Al tools improve triage throughput, analysts remain es-
sential for high-stakes judgment and contextual interpretation.
Tilbury et al. [15] emphasize the transition from human—
automation interaction to true collaboration, advocating sys-
tems that provide feedback, uncertainty, and override capabil-
ity.

A recent study, LLMs in the SOC: An Empirical Study
of Human—AI Collaboration [16], analyzed 3,000+ analyst
queries to large language model assistants over ten months.
The results show that analysts primarily use Al for reasoning
and contextual insight rather than automated decision-making,
highlighting the persistent role of human agency in defense
workflows.

Mohsin et al. [5] propose a unified framework for human—AlI
collaboration in SOCs, identifying autonomy tiers, feedback
loops, and trust calibration mechanisms as key components
of resilient security ecosystems. SentinelX builds on these
insights by embedding trust calibration and analyst approval
gates into its response pipeline, ensuring human participation
scales with confidence uncertainty or risk impact.

C. Explainable Al in Security Decision-Making

Explainability is increasingly viewed as a prerequisite for
trustworthy Al in cybersecurity. Model interpretability enables
analysts to verify system reasoning and prevent overblocking
or bias. The SHAP framework by Lundberg and Lee [6] pro-
vides additive feature attribution for consistent model expla-
nations, while Ribeiro et al. [7] propose LIME for generating
instance-level interpretability across black-box classifiers.

Recent work by Zhang et al. [13] and others demonstrates
how SHAP and LIME can be applied to intrusion detection
to reveal which features drive classification decisions. The
Frontiers ML-IDS framework [17] integrates explainability
into ML-based IDSs, jointly optimizing interpretability and
detection accuracy on datasets such as UNSW-NB15. How-
ever, these systems treat explanations as post hoc artifacts.
SentinelX differs by operationalizing explanations as decision
gates—uncertainty and inconsistent feature attributions trigger
human review before executing high-impact mitigation.

D. Federated and Collaborative Intrusion Detection

Distributed environments such as cloud-native and IoT
deployments challenge centralized monitoring due to data
volume, privacy, and regulatory constraints. Collaborative in-
trusion detection (CIDS) [18] and federated intrusion detection
systems (FIDS) [19] address these concerns through decentral-
ized model sharing and aggregated learning.

Wardana et al. [18] survey collaborative IDS taxonomies,
identifying trust, communication latency, and data heterogene-
ity as key obstacles. Makris et al. [19] propose federated
learning protocols that preserve privacy across domains while
maintaining high detection accuracy. SentinelX can integrate
these principles, extending human-in-the-loop governance to
multi-tenant architectures by combining federated model up-
dates with localized analyst validation.

E. Trust, Autonomy, and Governance Frameworks

Effective hybrid defense requires balancing automation ben-
efits with human oversight and accountability. NIST SP 800-
207 defines Zero Trust as continuous verification and con-
textual policy enforcement, eliminating implicit perimeter
trust [8]. NIST SP 800-207A further formalizes access de-
cision models for cloud-native systems [9]. Mohsin et al. [5]
extend this paradigm to security operations, presenting graded
autonomy frameworks where trust is calibrated dynamically
using performance metrics and transparency.

Beyond cybersecurity, studies on human—Al trust note
that system design—not model accuracy alone—drives effec-
tive collaboration. The Human—AI Collaboration survey by
Kulesza et al. [20] emphasizes cognitive calibration, feedback
visibility, and escalation paths as foundations for trustable
systems. SentinelX operationalizes these ideas through explicit
trust tiers that govern Al autonomy, explainability-driven con-
fidence thresholds, and NIST-aligned SOAR playbooks [10],
[11] for safe response orchestration.
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F. Summary and Research Gap

Existing research demonstrates substantial progress in de-
tection accuracy and automation, but critical gaps remain in
explainability, adaptability, and safe human oversight. Most
current systems: (1) focus on detection without integrated
response control; (2) lack uncertainty awareness or trust
calibration; and (3) fail to involve analysts dynamically in
ambiguous cases.

III. SYSTEM ARCHITECTURE

The SentinelX architecture is designed to unify real-time de-
tection, explainability, zero-trust access control, and human-in-
the-loop governance in a single threat mitigation framework. It
addresses the operational need for balancing automation with
human oversight, supporting dynamic decision thresholds,
explainable risk scoring, and scalable response orchestration.

Fig. 1 presents a high-level view of SentinelX. The system
is organized into five primary layers:

1) Data Plane (Collection and Feature Extraction)

2) Model Plane (Detection and Uncertainty Estimation)

3) Policy Plane (Risk and Trust Fusion)

4) Action Plane (SOAR Integration and Control)

5) Analyst Interface (Human-in-the-Loop Decision Con-

sole)

Each layer is modular, interoperable, and capable of op-
erating in low-latency settings typical of web-facing systems.
The system supports both on-premise and cloud-native deploy-
ments with containerized microservices.

A. Data Plane: Real-Time Telemetry Ingestion

The Data Plane collects telemetry from web servers, API
gateways, authentication services, and user session monitors.
Inputs include:

o HTTP/HTTPS requests (URI, method, headers, cookies)

« Authentication metadata (user ID, device posture, geo-IP)

o TLS fingerprints and browser signatures

« Rate-limiting and behavioral counters (burstiness, session
reuse)

o Real-time logs and API traces

The collected data is structured into feature vectors using
sliding time windows and sequence encodings. Both statistical
and semantic features are generated, including entropy of
parameters, request timing deltas, request path embeddings,
and header anomalies.

B. Model Plane: Detection and Uncertainty Scoring

This layer performs threat detection using a combination of:

o A supervised classifier fp(z) trained on labeled attacks
aligned to OWASP Top 10 and MITRE ATT&CK classes.

o An unsupervised anomaly model g(z) (e.g., Isolation For-
est, Variational Autoencoder) for zero-day and behavioral
anomalies.

« A predictive uncertainty estimator that calculates entropy,
confidence intervals, or conformal prediction bounds to
assess model reliability.

Signals from these models are fused into a unified risk
score r; via a calibrated ensemble function. The ensemble
output includes softmax probabilities, predictive entropy, and
conformity bounds for downstream policy gating.

C. Policy Plane: Zero-Trust Enforcement with Trust Calibra-
tion

The Policy Plane enforces conditional access decisions
based on:

o Subject—device-resource—context attributes (e.g., geo, de-
vice ID, session age, API sensitivity)

o Trust tiering (low, medium, high) based on model risk
score, history, and confidence

o NIST SP 800-207 and SP 800-207A aligned policy
evaluation functions

The trust engine combines static policies with real-time risk
scores. High-confidence, low-risk events pass automatically;
ambiguous or high-risk cases are queued for human review or
step-up authentication.

D. Action Plane: SOAR-Driven Graded Response

Based on the policy outputs, SentinelX executes responses
via integrated SOAR playbooks. Actions are selected from a
response ladder:

e Observe (log only)

o Challenge (captcha, MFA trigger)

« Rate-limit (throttle suspicious clients)
o Isolate (move to sandboxed subnet)

« Block (deny request or session)

Each action logs the rationale, model explanation, and
policy condition that triggered it. These records support com-
pliance, auditability, and post-mortem analysis.

E. Analyst Interface: Explainability and Feedback Loop

The HITL console displays real-time alerts enriched with:

o SHAP/LIME explanations for top model features

o Risk score visualizations with confidence bounds

« MITRE ATT&CK mappings of suspected tactics/tech-
niques

o Historical context and analyst notes

Analysts can approve or override suggested actions. Their
feedback updates the active learner and improves model cal-
ibration over time, closing the loop between detection and
decision.

IV. PROPOSED METHODOLOGY

The SentinelX framework combines zero-trust access con-
trol, real-time anomaly detection, predictive uncertainty esti-
mation, and human-in-the-loop (HITL) decision-making. This
section describes the methodology that governs how SentinelX
processes incoming requests, computes risk, and triggers ap-
propriate responses.
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Fig. 1. SentinelX system architecture: real-time detection, zero-trust enforce-
ment, and hybrid human—AI control.

A. Problem Formulation

Let X denote the space of incoming web requests and
contextual features (headers, URIs, IP, user agent, device
signals), and let x; € X be a request at time ¢. The objective
is to assign a risk score r; € [0,1] to each request and trigger
an action a; € A such that:

ay = mw(zy, 1, 01) (1)

where 7 is the policy decision function, and c; denotes
contextual attributes (user identity, resource sensitivity, geolo-
cation, session history). The selected action a; is one of:

A = {Observe, Challenge, Rate-limit, Isolate, Block}

B. Risk Scoring via Ensemble Detection

SentinelX uses an ensemble of detection models:

o Supervised Classifier fy(x) trained on labeled web attack
types (e.g., injection, CSRF, broken access).

o Unsupervised Anomaly Detector g(z) (Isolation Forest or
VAE) that assigns an anomaly score based on deviations
from benign request distributions.

The risk score r; is a fusion of classifier confidence,
anomaly magnitude, and uncertainty:

7y = a - conf(fp(xs)) + B+ g(w¢) + v - entropy(fo(z:)) (2)
Here, conf(-) is the maximum softmax probability, and

entropy(-) captures predictive uncertainty. «, 3, and ~y are
tunable weights calibrated via validation.

C. Policy Decision Function and Trust Tiers

Each request is evaluated against a zero-trust policy T,
which checks whether access should be granted, challenged,
or denied based on:

o Contextual attributes c;: device trust level, IP reputation,
resource classification.

o Risk score 7;: computed from detection and uncertainty
models.

« Historical behavior: failed logins, frequency, request rate.

Trust is tiered into three levels:

High if r, < €1 and ¢; benign
7t = ¢ Medium if €1 <71 < €9 3)
Low if 7, > €2 or policy violation

where €71, €2 are confidence thresholds learned during sys-
tem tuning.

D. Action Selection Logic

Actions are selected based on the trust tier 7 and risk
context:

o High Trust: Observe only, unless violating a critical
policy.

e Medium Trust: Challenge (e.g., CAPTCHA, MFA) or
rate-limit.

o Low Trust: Isolate session or block request entirely.

Requests flagged as ambiguous (e.g., conflicting signals,

explanation divergence) are escalated to the analyst console
for human-in-the-loop (HITL) validation.

E. Explainability-Driven Escalation

SentinelX uses SHAP or LIME explanations to interpret
predictions. Each decision includes a feature attribution vector
(N

et = SHAP(fp(4))

Requests where e; shows weak alignment with expected
patterns (e.g., non-semantic drivers) are flagged for review.
Analysts can accept, modify, or reject actions. Their choices
feed into a label store.

F. Active Learning Feedback Loop

An active learner £ maintains a buffer of high-uncertainty
or novel requests, using:

o Uncertainty sampling: prioritize samples with high en-
tropy.

o Diversity sampling: cover underrepresented request pat-
terns.

o Human feedback: reinforce model updates with analyst
labels.

Periodically, £ retrains fy with new labeled samples, im-
proving detection of evolving threats.
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G. Response Execution via SOAR Integration

Each action a; is executed through a preconfigured SOAR
playbook that logs:

o Action type and time

e Model explanation and risk score
« Policy trigger and context

o Analyst override (if applicable)

These logs support NIST SP 800-61r3 post-incident analysis
and compliance reporting.

V. EXPERIMENTAL RESULTS

This section presents the evaluation of SentinelX against
state-of-the-art baseline models across detection accuracy, la-
tency, response timing, and analyst workload. Our experiments
simulate real-world web application traffic including OWASP-
aligned attacks and benign requests.

A. Comparative Baselines

We compare SentinelX against the following:

« Isolation Forest (IF) [4]: a widely adopted unsupervised
anomaly detector.

o OIFIDS [21]: an optimized variant of Isolation Forest for
streaming environments.

o iMondrian Forest (iMF) [22]: hybrid isolation and Mon-
drian tree ensemble for online anomaly detection.

o CFS-BA Ensemble [23]: a correlation-based feature se-
lection model combined with ensemble classifiers.

B. Evaluation Metrics

We report:

« AUROC, AUPRC — general detection quality

e Precision@99%, FPR@99% — high-precision operating
point

o Latency — average inference + response time

e MTTD/MTTR — detection and response delays

o Analyst effort — reviews per 1k alerts, block precision

C. Detection Performance

ROC Curve Precision-Recall Curve
Isolation Forest 1.00 Sentinelx
SentinelX
0.98
0.55 0.96
§094
092

True Positive Rate
°
g

0.90
0.88
0.86

0.00 0.01 0.02 0.03 0.04 0.05 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate Recall

Fig. 2. ROC and PR curves: SentinelX vs Isolation Forest

SentinelX significantly improves AUROC and AUPRC over
all baselines. Its low false positive rate at high precision (0.4%)
is ideal for security contexts, ensuring minimal alert fatigue
and false blocks.

SentinelX Delay Distribution
175}

150

Frequency
= =
w ~ o N
o ui o (6,

N
(9]
T

o
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Detection-to-Action Delay (s)

Fig. 3. Histogram of detection-to-action delays under SentinelX

D. Operational Metrics

SentinelX reduces MTTD by over 30%, and MTTR by
nearly 50% compared to ensemble-based IDS. Its active learn-
ing and trust calibration reduce the analyst burden drasti-
cally—only 180 alerts per 1k require manual intervention.

VI. DISCUSSION

The experimental results clearly demonstrate that SentinelX
outperforms existing methods in both detection accuracy and
operational efficiency. Its hybrid architecture—combining su-
pervised classifiers, anomaly detectors, and trust-calibrated
policy enforcement—enables precise threat mitigation while
preserving explainability and control.

Compared to baseline models like Isolation Forest and
optimized ensemble approaches, SentinelX shows:

o Improved Precision: The low false positive rate (0.4%) at
high operating precision (98.5%) ensures that legitimate
traffic is rarely interrupted.

o Faster Response: With MTTD and MTTR significantly
reduced, SentinelX supports near real-time mitigation of
web attacks, crucial for dynamic API environments.

e Reduced Analyst Burden: Only 18% of alerts required
manual validation, demonstrating effective use of explain-
ability and uncertainty to triage decisions.

o Safe Automation: By gating high-impact actions (e.g.,
blocking) behind model explanations and trust thresholds,
SentinelX minimizes the risk of overblocking critical
resources.

The use of SHAP/LIME explanations, together with a
policy-aligned risk model, enables analysts to understand and
trust system decisions. The embedded active learning loop fur-
ther adapts to new traffic patterns and attack tactics, improving
robustness over time without constant human retraining.

A. Limitations

While SentinelX shows strong empirical performance, sev-
eral limitations should be noted:
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TABLE I
DETECTION PERFORMANCE COMPARISON ACROSS MODELS

Method AUROC AUPRC Prec@99% FPR@99%  Latency (ms)

Isolation Forest 0.89 0.81 0.88 0.015 22

OIFIDS 0.91 0.85 0.90 0.012 20

iMondrian Forest 0.92 0.86 0.91 0.011 18

CFS-BA Ensemble 0.90 0.84 0.89 0.013 21

SentinelX 0.975 0.965 0.985 0.004 14

TABLE 11 In future work, we plan to explore multi-tenant and feder-

OPERATIONAL METRICS AND ANALYST WORKLOAD COMPARISON

Metric IF OIFIDS iMF CFS-BA SentinelX
MTTD (s) 43 39 3.6 4.0 2.5
MTTR (s) 9.5 8.7 8.2 8.8 4.1
Reviews / 1k alerts 880 720 630 700 180
Auto-block Fraction 0.10 0.13 0.14 0.12 0.82
Block Precision (API)  0.91 0.92 0.93 0.92 0.985

« Dependence on Feature Quality: In poorly instrumented
environments, where telemetry is limited or obfuscated,
the model’s detection accuracy may degrade.

o Analyst Latency: Although SentinelX reduces manual
workload, escalation delays still depend on human re-
sponse time, which may vary across deployments.

o Cold Start for New Deployments: Initial tuning (e.g., trust
thresholds, ensemble weights) may require bootstrapping
with small labeled sets or simulated traffic.

o Adversarial Evasion: SentinelX is not designed as an
adversarially robust model; adversaries who understand
model logic may still craft evasive inputs, although
human-in-the-loop fallback can reduce risk.

Future work should address these challenges via continu-
ous learning, integration with adversarial detection modules,
and exploration of federated deployments across distributed
environments.

VII. CONCLUSION

This paper presented SentinelX, a novel hybrid human—Al
framework for real-time web threat mitigation. By integrating
supervised and unsupervised detection models with zero-
trust policy enforcement and explainable decision-making,
SentinelX enables scalable, adaptive, and safe automation in
web application security.

The architecture explicitly supports trust calibration, allow-
ing high-confidence events to be handled autonomously, while
deferring ambiguous or sensitive cases to human analysts.
Empirical results show substantial improvements in precision,
response time, and analyst workload compared to established
intrusion detection systems.

SentinelX contributes a practical blueprint for deploying
human-centered security automation that aligns with modern
risk governance and SOAR practices. Its modular design and
explainability make it suitable for diverse operational environ-
ments—from enterprise SOCs to cloud-native platforms.

ated extensions, integrate adversarial robustness mechanisms,
and evaluate SentinelX in longitudinal deployments to study
its adaptive learning capabilities in the presence of concept
drift and evolving attacker behavior.
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