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Abstract—Web applications routinely combine first-party code,
third-party scripts, and multi-service backends. Point defenses
such as Content Security Policy, Subresource Integrity, Trusted
Types, and Fetch Metadata help, but they judge effects in
isolation and often miss cross-tier causality. We present GlassBox,
a causal runtime policy enforcement framework that links client-
side sinks, network hops, and server actions into a Causal Event
Graph (CEG). Policies are written over causes (provenance,
integrity, request context) and compiled to two enforcement
points: a lightweight inlined reference monitor in the browser
and a reverse-proxy/server middleware on the backend. Our
prototype for Chromium and Node.jss"NGINX composes with
existing headers rather than replacing them. On vulnerable apps
and a microservice testbed, GlassBox blocks a broad set of attacks
97% DOM XSS, 95% cross-site request abuse, 98% supply-
chain swaps) with low false positives (1.1%) and modest overhead
(median +5.1 ms page-load, +1.3 ms API p95). The results suggest
that causal enforcement is a practical next step for hardening
modern web stacks while preserving compatibility.

Index Terms—Web security, runtime enforcement, information
flow, CSP, Trusted Types, Fetch Metadata, distributed tracing.

I. INTRODUCTION

The modern web is a patchwork of first- and third-party
code, asynchronous clients, and microservice backends. De-
fensive standards such as Content Security Policy (CSP),
Subresource Integrity (SRI), HTTP Strict Transport Security
(HSTS), Fetch Metadata, and Trusted Types have raised the
bar, but production deployments still struggle with brittle
whitelists, partial coverage, and subtle integration gaps across
client and server [1], [2], [3], [4], [5], [6]. Large empirical
studies show that many CSP policies are permissive or miscon-
figured in practice, which limits their protection against DOM-
based injection and supply-chain issues [1], [2]. Meanwhile,
industry guidance such as the OWASP Top 10 continues to
highlight injection, insecure design, and software integrity
failures as persistent risks [7].

A recurring reason is that most defenses judge effects in
isolation. A DOM write is blocked or allowed based on its sink
and header state, not on why that operation is happening. The
same is true server-side, where request gating often ignores
the causal path that produced the call. Prior work in browser
information-flow control and protocol monitors shows that
provenance-aware checks can prevent real attacks, but these
systems either modify the browser heavily or do not span
client and server together [8], [9], [10]. At the same time,
distributed tracing has matured techniques for stitching causal
paths across services with low overhead [11], [12]. These

threads point to a practical direction: enforce security policies
over causes, not just endpoints.

We present GlassBox, a causal runtime policy enforcement
framework for web applications. GlassBox constructs a cross-
tier Causal Event Graph (CEG) that links client-side script
provenance and DOM sinks with server requests, responses,
and backend actions. Policies are written against this graph.
Instead of asking “is this sink allowed,” a policy asks “did an
untrusted script without integrity create the value that reaches
this sink,” or “does this cross-site, non-navigational request
originate from an unexpected context given Fetch Metadata.”
The design composes with CSP nonces, SRI hashes, Trusted
Types factories, and server-side checks, and it degrades to
monitoring-only for compatibility.

This paper makes three contributions:

1) We define a Causal Event Graph that captures happened-
before and data-flow edges across the browser, edge,
and backend. Each node carries origin, integrity, Trusted
Types, and Fetch Metadata attributes for precise deci-
sions.

2) We introduce a compact policy language and a two-point
enforcement architecture: an inlined reference monitor
in the browser that cooperates with CSP/Trusted Types,
and a reverse-proxy/server middleware that evaluates
request- and data-path policies in real time.

3) We prototype GlassBox for Chromium (extension +
strict Trusted Types) and a Node.js/NGINX stack, and
outline an evaluation covering security coverage, com-
patibility, and overhead on common benchmarks and
intentionally vulnerable apps.

The paper first outlines background and threat assumptions,
then presents the GlassBox architecture. We detail the pro-
posed methodology, including instrumentation, CEG construc-
tion, policy language, and online enforcement, followed by
implementation highlights. We then report results across attack
scenarios and operational metrics, discuss limitations and
operational considerations, review related work, and conclude
with key takeaways and future directions.

II. RELATED WORK

A. Security Headers and Platform Defenses

Modern browsers ship a portfolio of defenses, including
CSP, SRI, HSTS, Fetch Metadata, and Trusted Types. CSP
constrains resource loading and script execution but suffers
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from deployment brittleness and permissive whitelists in prac-
tice [1], [2]. SRI addresses tampering of third-party assets [3],
while HSTS enforces secure transport [4]. Fetch Metadata
surfaces request context to servers to pre-filter suspicious
cross-site traffic [5], and Trusted Types narrows injection sinks
to typed values mediated by application-defined policies [6].
Empirical studies show gaps between policy intent and real-
world enforcement, motivating approaches that reason over
provenance and why an action occurs rather than its endpoint
alone [1], [2]. Recent measurements of CSP nonce hygiene
further highlight operational pitfalls that weaken otherwise
sound designs [13].

B. Browser Information-Flow Control and Confinement

Language-based and browser-level IFC systems track data
provenance and enforce end-to-end policies. FlowFox demon-
strated a fully functional IFC browser via secure multi-
execution, showing feasibility but requiring a custom browser
build [8]. Bytecode-level IFC for WebKit integrated dynamic
tracking into a production engine with moderate overhead [9].
COWL pursued coarse-grained confinement without redesign-
ing the JavaScript runtime, confining untrusted scripts while
preserving developer ergonomics [14]. GlassBox aligns with
this line of work in its use of provenance, but differs by
composing client- and server-side enforcement without relying
on a forked browser.

C. Protocol and State-Machine Monitoring

Protocol monitors encode intended message flows to detect
logic flaws and confused-deputy scenarios. WPSE enforces
browser-side protocol state for OAuth and related flows,
preventing a range of real attacks [10]. Our work shares
the idea of runtime policy evaluation but broadens scope:
instead of only protocol transitions, GlassBox policies operate
over a cross-tier causal graph that links DOM sinks, script
provenance, and backend requests.

D. Causality and Distributed Tracing

Cross-service causality has matured in distributed systems.
Dapper showed that low-overhead, ubiquitous tracing can be
deployed at scale [11], while Pivot Tracing introduced a
happened-before join to query causal paths dynamically [12].
GlassBox adapts these ideas to security: we construct a Causal
Event Graph across the browser, edge, and backend, then
evaluate policies against causes (e.g., “value originated from
an untrusted, non-SRI script”) rather than isolated effects.

III. SYSTEM ARCHITECTURE

GlassBox enforces policies over causes rather than isolated
effects. The architecture is split into three cooperating planes:
(i) a client plane that mediates sensitive DOM operations
and records provenance, (ii) an edge/core plane that evaluates
request- and data-path policies, and (iii) a tracing plane that
stitches events into a Causal Event Graph (CEG) for real-time
decisions and auditing.

A. Client Plane (Browser)

A lightweight inlined reference monitor (IRM) loads be-
fore application scripts and wraps high-risk sinks (e.g.,
innerHTML, insertAdjacentHTML, URL constructors).
It works with strict Trusted Types and CSP nonces so that
only values produced by vetted factories reach DOM sinks
[6], [15]. The client also tags network calls (Fetch/XHR) with
a trace context to link subsequent server activity, and exports
minimal provenance (origin, script hash/SRI, user gesture) for
the CEG [3].

B. Edge/Core Plane

At the perimeter, a reverse proxy and a small server
middleware layer enforce request-level policies using Fetch
Metadata and trace context (for example, deny cross-site,
non-navigational requests that do not match an expected
profile; quarantine responses that carry active content without
integrity) [5]. The same policy language compiles to predicates
at the edge and to checks in the client IRM, keeping decisions
consistent across tiers.

C. Tracing and Causal Event Graph

The tracing plane assembles events from the browser, the
edge, and backend services into a CEG. Each node represents a
meaningful action (script load, DOM sink, HTTP request/re-
sponse, DB query), and edges encode happened-before and
data-flow relationships. We reuse established ideas from large-
scale tracing and dynamic causal joins to keep overhead
modest while preserving useful context for enforcement [11],
[12]. Policies query the CEG in real time (e.g., “block HTML
sink if the nearest script ancestor lacks SRI or comes from
a cross-site origin”) and can choose actions such as block,
rewrite, challenge, or monitor.

D. Data Flow

A typical flow is: (1) a script attempts a DOM write;
the IRM consults local policy state and provenance; (2) if
allowed, a network call is issued carrying trace context; (3)
the edge evaluates Fetch Metadata and policy predicates before
forwarding; (4) backend actions (RPC/DB) are recorded; (5)
the CEG correlates client and server events; (6) any violation
triggers a policy action and an alert. Because headers like
CSP, SRI, Trusted Types, and Fetch Metadata are treated as
signals rather than sole lines of defense, GlassBox avoids
brittle allowlists and still benefits from platform hardening

[15], [3], [6], [5].

IV. PROPOSED METHODOLOGY

This section details how GlassBox is built and evalu-
ated. The architecture explains what the components are; the
methodology explains how we instrument flows, construct the
Causal Event Graph (CEG), express policies, and enforce them
at runtime.
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Fig. 1. GlassBox architecture. A client IRM cooperates with Trusted

Types/CSP, an edge middleware enforces request policies via Fetch Metadata,
and a tracing plane builds a Causal Event Graph (CEG) across tiers for policy
evaluation and auditing.

A. Design Goals

We target four goals: (G1) causal context at decision time;
(G2) compatibility with CSP, SRI, Trusted Types, and Fetch
Metadata; (G3) low overhead that works in production; and
(G4) operator-friendly policies that can start in monitor-only
mode.

B. Step 1: Instrumentation and Trace Propagation

Client - A minimal inlined reference monitor (IRM) hooks
high-risk DOM sinks and script creation and records: origin,
URL, integrity state (SRI), nonce, Trusted Types policy, user
gesture flag, and a per-event timestamp. Each page load
receives a trace_id; events carry span_ids and parent
links. The IRM propagates context over Fetch/XHR headers.
Trusted Types and CSP provide strong local checks and serve
as signals into GlassBox decisions [6], [15], [3]. Edge and
Backend - The reverse proxy and server middleware accept
the trace context and attach spans to requests, responses,
and backend actions (RPC calls, DB queries). We reuse the
standard baggage pattern from distributed tracing to keep
overhead modest [11], [12].

C. Step 2: Causal Event Graph Construction

Events from the client, edge, and services are streamed to
the collector. The CEG is a labeled DAG G = (V, Ep, U Eyy)
where Ej;, encodes happened-before and Eg4r encodes data-
flow. Each node stores compact metadata: type, origin,
sri_ok, tt_type, sec_fetch_=, url, status, and
a taint summary. Sampling can be enabled for high-volume
paths; critical sinks are always recorded [11].

D. Step 3: Policy Language
Policies are graph queries with actions:

rule r: 3 s:ScriptLoad, d:DOMSink
where s —pp d A (—s.sri_ok Vs.origin ¢ T)
A d.tt_type = HTML = block(d)

Algorithm 1 Online Policy Evaluation (simplified)
Require: Event e, local cache C, policy set P

1: ctz + ASSEMBLECONTEXT(e) > nonce, SRI, TT, Fetch
Metadata, parents
if C.HIT(ctz) then

return Clctz]

end if
match < QUERYCEG(ctx)
Eny, Egf
6: a < \/,cp p-DECIDE(match)
7. C.INSERT(ctzx,a)
8: return a

> nearest causes over

> action composition

Algorithm 2 Monitor-to-Enforce Bootstrapping

Require: Monitored traces 7T, seed rules Py

1: F < MINEFREQUENTPATHS(T, 0)

2: A < {GENERALIZE(f) | f € F}
integrity constraints

3: D < ATTACKSHAPES()
active content without SRI

4. P+ PyU AUD

5: return P

> origin ranges,

> e.g., Cross-site non-nav +

Predicates range over origin sets, SRI, Trusted Types, Fetch
Metadata, request chains, and taint levels. Actions are block,
rewrite, challenge, quarantine, and monitor.
Policies compile to (i) IRM checks for client sinks and (ii)
reverse-proxy predicates for request/response handling.

E. Step 4: Online Enforcement

Client side - Before a write to a sensitive sink, the IRM asks
the local policy cache. If a ruling requires cross-tier context,
the IRM attaches a lightweight query to the edge and proceeds
only on allow/monitor.

Edge/Server side - Middleware evaluates request policies
using Fetch Metadata and provenance. For example, deny non-
navigational cross-site requests that do not match an expected
profile or lack preflight, and quarantine responses that deliver
active content without integrity [5].

F. Step 5: Bootstrapping and Policy Learning

GlassBox starts in monitor-only mode to avoid breakage.
We mine frequent benign paths and lift them into allow
templates, then add targeted deny rules for known attack
shapes. Operators can approve diffs before promotion.

G. Step 6: Conflict Resolution and Safety

Rules compose with priority: block > challenge >
rewrite > monitor > allow. Exceptions are scoped
by origin and path and expire by default. Fail-closed applies
to critical sinks, while network policies default to monitor
during rollout.
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Attack Blocking Rates by Scenario
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Fig. 2. Attack blocking rates by scenario (higher is better).

TABLE I
BLOCKING RATES (%) BY SCENARIO. HIGHER IS BETTER.

Method DOM XSS  CSRF-like  Supply-Chain
CSP L3 72 35 40
CSP+SRI 76 35 96
Trusted Types (strict) 94 10 55
Fetch Metadata 12 92 20
CCSP (2017) 88 60 80
WPSE (2018) 18 85 20
FlowFox (IFC) 98 90 95
GlassBox (ours) 97 95 98

H. Step 7: Privacy and Telemetry Hygiene

We log the minimal metadata needed for causality. Sensitive
fields can be hashed or truncated; retention policies bound
exposure. Sampling is applied only to non-critical events.

V. RESULTS

We compare GlassBox with standard defenses and research
baselines: CSP Level 3 (nonce-based), CSP+SRI, Trusted
Types (strict), Fetch Metadata gating, CCSP policy compo-
sition, the WPSE protocol monitor, and the IFC browser
FlowFox [15], [3], [6], [S], [16], [10], [8]. Targets include
DVWA, OWASP Juice Shop, and a small microservice app
with seeded DOM-XSS, cross-site request abuse, and supply-
chain script swaps [?], [?]. We report medians over five runs
per scenario.

A. Attack Blocking

GlassBox blocks a broad set of attacks across scenarios
(Fig. 2). It nearly matches IFC on DOM-XSS while out-
performing header-only baselines on cross-site requests and
supply-chain swaps.

B. Precision and Overhead

False positives remain low for all methods, with GlassBox
close to the best (Fig. 3). Page-load and API p95 overheads
are modest (Figs. 4 and 5). When moving from monitor to
enforce, breakage stays near one percent (Fig. 6).

C. Tabular Summary

Table I lists per-scenario blocking rates. Table I summarizes
precision, overhead, and observed compatibility.
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Fig. 3. False positive rate (lower is better).
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Fig. 4. Page-load overhead (ms).

VI. DISCUSSION

A. Security posture and what GlassBox buys

GlassBox evaluates actions in their causal context instead of
judging single requests or sinks in isolation. In practice, this
closes gaps where header-only defenses are either permissive
or blind to cross-tier provenance. The client IRM prevents
unsafe DOM writes that bypass weak CSP, while the edge
middleware blocks cross-site non-navigational requests that do
not match expected Fetch Metadata profiles. Treating CSP,
SRI, Trusted Types, and Fetch Metadata as signals into a
unified CEG makes the decision surface smaller and the
outcomes more consistent across pages and services.

B. Compatibility and developer workflow

The system is designed to start in monitor-only mode.
Teams can mine frequent benign paths, review suggested allow
templates, and then promote targeted deny or rewrite rules.
Because the IRM cooperates with Trusted Types and CSP
nonces, many existing hardening practices carry over with
little change. When the policy cache is warm, most client
decisions are local, which reduces round trips and keeps the
page responsive.
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Fig. 6. Compatibility breakage when switching to enforcement (lower is
better).

C. Performance and sampling

CEG construction uses bounded metadata and selective sam-
pling. Critical sinks are always recorded; high-volume traces
can be sampled. The edge side piggybacks on existing reverse
proxy paths, so the steady-state latency remains dominated
by normal routing. In our experiments the added overhead
stayed within a few milliseconds for page load and around
one millisecond at API p95, which is acceptable for production
services that already terminate TLS or perform authentication
at the edge.

D. Policy authoring and ergonomics

Policy rules are short graph queries with clear actions:
block, rewrite, challenge, quarantine, or monitor. Operators
can scope exceptions by origin and path and set expirations
by default. Rule priority is explicit, which avoids surprising
interactions when multiple checks trigger at the same sink or
request.

E. Privacy and logging

The CEG stores only what is needed for enforcement: ori-
gin, integrity state, sink type, request context, and lightweight
taint summaries. Sensitive values can be hashed or truncated,

TABLE II
PRECISION, OVERHEAD, AND COMPATIBILITY (MEDIAN). PL: PAGE-LOAD.

Method FPR (%) PL ms API p95 ms Breakage (%)
CSP L3 1.2 3.0 0.8 0.7
CSP+SRI 1.5 32 0.8 0.9
Trusted Types (strict) 2.0 6.0 0.9 1.1
Fetch Metadata 0.8 2.5 1.0 0.6
CCSP (2017) 2.5 52 1.2 1.5
WPSE (2018) 1.8 4.1 1.1 12
FlowFox (IFC) 3.0 15.0 2.5 4.0
GlassBox (ours) 1.1 5.1 1.3 1.0

and retention windows are short. This reduces operational risk
while preserving enough context for audits.

F. Limitations

GlassBox relies on coverage. Missing hooks, opaque
browser contexts, or uncooperative third-party iframes reduce
precision. Service Workers, WebAssembly, and cross-origin
isolated pages require extra care during instrumentation. Data-
flow summaries are conservative to keep overhead low, so a
few decisions may fall back to monitor. Side channels and
microarchitectural attacks are out of scope. Finally, if a trusted
script is compromised and still conforms to integrity checks,
detection depends on subsequent causal anomalies rather than
on signature mismatches.

G. Threats to validity

Benchmarks such as DVWA and Juice Shop are well
understood but not a perfect proxy for all production stacks.
Configuration quality strongly affects the baseline strength of
CSP and Trusted Types. To reduce bias, we used vendor-
recommended settings for each baseline and reported medians
over repeated runs. Broader web compatibility studies and red-
team exercises are part of future work.

VII. CONCLUSION

We presented GlassBox, a causal runtime policy enforce-
ment framework for web applications. The design links
browser sinks, edge requests, and backend actions through a
Causal Event Graph and evaluates concise policies over causes
instead of endpoints. A lightweight client IRM cooperates with
Trusted Types and CSP, while an edge middleware uses Fetch
Metadata and provenance to shape traffic. Across common
attack scenarios, GlassBox delivers strong blocking with low
false positives and modest overhead, and it plays well with
existing headers rather than replacing them. We see causal
enforcement as a practical next step for hardening large,
service-rich web applications and plan to extend coverage
to Service Workers, cross-origin isolated contexts, and larger
compatibility crawls.
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