https://doi.org/10.65091/icicset.v2i1.28

SCALE-GNN: Advanced Graph Reduction for
Scalable Test Case Prioritization Using GNN

Bhusan Thapa
Department of Software Engineering
Nepal College of Information Technology
Pokhara University, Nepal
bhusan @ncit.edu.np

Abstract—Test Case Prioritization (TCP) is crucial for efficient
regression testing, especially in CI pipelines where rapid feed-
back is critical. While Graph Neural Network (GNN) methods
outperform traditional prioritization heuristics, their scalability is
severely limited on large software systems due to exploding graph
size and GPU memory requirements. This paper introduces
Scale-GNN, a scalable and fault-aware GNN framework that
aggressively reduces graph size through a three-stage pipeline
combining neural feature compression, fault-centric pruning, and
spectral graph coarsening.

Experiments across two datasets with 150 and 5000 test cases
demonstrate that Scale-GNN reduces graph size by up to 78%,
cuts training time by 3.1x, reduces GPU memory by 61%, and
preserves or improves fault detection effectiveness (APFD 0.85-
0.93). Notably, Scale-GNN detects up to 88% of faults within
the first 10% of test executions, outperforming both classical
heuristics and unreduced GCN baselines. These results establish
Scale-GNN as a practical approach for integrating GNN-driven
prioritization into industrial-scale regression testing.

Indexed Terms: Graph Neural Networks, Test Prioritization,
Graph Coarsening, Regression Testing, Fault Localization, Scal-
ability.

I. INTRODUCTION

Modern systems routinely contain thousands of test cases,
making exhaustive regression testing expensive. Test Case
Prioritization (TCP) improves feedback speed by executing
the most fault-revealing tests first. Recently, Graph Neural
Networks (GNNs) have shown strong performance due to
their ability to model structural dependencies between tests
and program entities. However, GNN-based TCP fails to scale
beyond a few thousand nodes due to memory bottlenecks.

Scale-GNN addresses this problem by integrating domain-
aware graph reduction strategies. By leveraging fault correla-
tion and structural clustering, we significantly compress the
test dependency graph without losing important fault-related
information.

The contributions of this work include:

o A three-stage graph reduction pipeline using neural
encoding, fault-centric pruning, and spectral coarsening.

o A lightweight GCN architecture optimized for reduced
graphs.

o A comprehensive evaluation on synthetic and real-world
datasets up to 5000 tests, exceeding prior TCP-GNN
work.
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e A detailed early-fault detection analysis showing that
Scale-GNN reveals faults significantly earlier than base-
lines.

II. RELATED WORK

Test Case Prioritization (TCP) has been extensively studied
over the past two decades. Early approaches relied on heuristic
metrics such as code coverage [!], historical failure rates [2],
and greedy or search-based algorithms [3]. While effective for
smaller suites, these methods often fail to capture complex,
non-linear interactions between test cases and program entities
in large-scale systems.

The integration of deep learning into software testing has
opened new avenues for TCP. Zhang et al. [4] first proposed
TCP-GNN, applying Graph Convolutional Networks (GCNs)
[5] to model test dependencies, demonstrating superior perfor-
mance over heuristic baselines. More recently, Husakovskyi
[6] provided a comprehensive analysis of GNN applications
in test case prioritization, highlighting both challenges and
opportunities in QA automation. Their survey identified scal-
ability as one of the primary obstacles preventing GNN-based
TCP from widespread industrial adoption, specifically noting
the quadratic memory growth and computational overhead that
our work directly addresses.

However, TCP-GNN and subsequent GNN-based ap-
proaches [7]-[9] inherit the fundamental scalability limitations
of GNNs: memory and computational costs grow quadratically
with graph size, making them impractical for industrial test
suites exceeding a few thousand nodes. Recent work by Kumar
et al. [10] attempted to address this through hierarchical
GNN:gs, but their approach still faced challenges with extremely
large test suites.

To address GNN scalability, general graph reduction tech-
niques have been proposed. Graph Sampling methods, such
as those used in GraphSAGE, and Graph Coarsening tech-
niques [11], [12] aim to reduce graph size while preserving
global structure. However, these are generic methods designed
for social or citation networks and do not consider domain-
specific signals critical for TCP, such as fault correlation or
execution semantics. Applying them directly to test graphs
risks eliminating subtle fault-revealing dependencies.

Recent work has explored adaptive and learning-based TCP
approaches. Li et al. [7] used reinforcement learning for adap-
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tive prioritization, while Patel et al. [13] documented lessons
from industrial deployments of GNN-based TCP. Miranda and
Gopinath [14] tackled large-scale prioritization in CI systems
using lightweight heuristic adaptations, but did not leverage the
representational power of GNNs. Conversely, Gonzalez and
Mitra [15] applied graph coarsening for scalable GNNs but in
a different application domain (node classification), without
addressing the fault-aware, ranking-specific objective of TCP.

In the broader context of scalable GNNs, recent surveys
by Satpathy et al. [16], Zhu et al. [17], and Zhang et al.
[18] highlight the growing need for domain-specific scala-
bility solutions. Henzinger et al. [19] demonstrated GNN-
based modularity optimization for graph clustering, but their
approach focuses on community detection rather than task-
specific graph reduction for prioritization. More recent work
by Wang et al. [20] has explored temporal GNNs for evolving
systems, addressing dynamic aspects of TCP that remain as
future work for our approach. Additionally, Liu et al. [21]
investigated cost-aware multi-objective approaches, and Singh
et al. [22] focused on explainability aspects for industrial
adoption.

Our work, Scale-GNN, bridges this gap. We propose
the first domain-aware, multi-stage graph reduction pipeline
for GNN-based TCP. Unlike generic coarsening, our method
integrates neural feature compression to retain semantic test
information [23], fault-centric pruning to preserve critical
failure paths, and spectral clustering [1 1], [19] for structural
compression. This tailored approach allows Scale-GNN to
achieve the scalability of reduction techniques while main-
taining—and in some cases improving—the fault detection
accuracy of a full GNN, a trade-off not achieved by prior
art.

III. METHODOLOGY

. Software Modules

. Test Cases

Fig. 1. Architecture of the GCN model showing the graph representation .

A. Graph Representation
The test suite is represented as a heterogeneous graph G =
(V, E) containing:
o Test case nodes with coverage and failure features.
o Program entity nodes (methods, classes).
o Edges representing dynamic execution traces, static call
relations, and historical fault propagation.

B. Three-Stage Reduction Pipeline
Scale-GNN reduces G to a compressed graph G':

G/ == \I!cluster (Qprune (@encode(G)))

Original Test Dependency Graph (G)

A

Neural Feature Compression

4

Fault Centric Pruning

¥

Spectral Clustering

A

Final Reduced Graph (G’)

Fig. 2. Scale-GNN three-stage reduction pipeline: neural compression, fault-
aware pruning, and spectral coarsening.

1) Neural Feature Compression (Oecpcode): A Variational
Graph Autoencoder reduces feature dimensionality by 40-60%
while preserving semantic information about test behavior and
historical performance.

2) Fault-Centric Pruning (Qprune): Edges with historical
fault-correlation p < 0.2 are removed. This threshold was
determined through empirical analysis across multiple datasets
and represents a balance between graph simplification and
preservation of fault-revealing dependencies.

3) Spectral Graph Coarsening (VU p,ster): Eigenvector-
based clustering merges structurally similar nodes into supern-
odes, following spectral methods that preserve global graph
properties [11].

C. ScaleGCN Model

ScaleGCN is a two-layer GCN with global pooling and
ranking head. It prioritizes tests based on predicted fault
relevance, optimized through binary cross-entropy loss with
fault labels as targets.
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IV. EXPERIMENTAL SETUP
A. Datasets

We evaluate in 2 datasets:

o Synthetic-1: 100 tests

e Open-Source: 5000 tests (from Apache Commons and
Google Guava projects)

Faults are injected into 5-10% of tests following realistic
failure patterns observed in industrial systems [13].

B. Baselines

o Full GCN (unreduced graph) [4]

e Historical-failure heuristic [2]

o Hierarchical GNN [10]

o Cost-aware Multi-objective GNN [21]

C. Metrics

We compute: APFD, Recall@10%, Precision@ 10%, Train-
ing time, Peak GPU memory, and Cost-effectiveness ratio
following recent benchmarking guidelines [24].

V. RESULTS
A. Graph Reduction Performance

Large-2 (5000 tests) achieves the strongest compression:
78% of nodes and edges removed. The reduction maintains
structural properties with spectral distortion below 15% across
all datasets.

SCALE-GNN Performance Results
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Fig. 3. Full GNN v/s Scale-GNN G’ showing structural preservation despite
significant size reduction.

B. Fault Detection (APFD)

APFD remains above 0.84 even for 5000-test dataset.
Scale-GNN achieves APFD scores of 0.85-0.93 across all
datasets, outperforming Full GCN (0.82-0.90) and significantly
surpassing heuristic baselines (0.70-0.78).

C. Early Fault Detection Analysis

Scale-GNN is designed to detect faults early. Across
datasets:

o It identifies 72-88% of faults in the first 10% of tests.

o This is 2.1x earlier detection than full GCN.

o And 3.8x earlier than historical heuristics.

e Compared to hierarchical GNN [10],
achieves 1.4x better early detection.

Scale-GNN

Large datasets still maintain ;80% early detection.

D. Efficiency Gains
Scale-GNN provides:

o 3.1x faster training compared to Full GCN

e 61% lower memory usage

o Makes 5000-test GNN training feasible on consumer-
grade GPUs

e 24% better cost-effectiveness than multi-objective ap-
proaches [21]

VI. DISCUSSION

The experimental results demonstrate that Scale-GNN effec-
tively balances scalability and accuracy for GNN-based TCP.
Our three-stage reduction pipeline achieves its primary goal:
making GNN training feasible for large test suites (up to 5000
tests) with substantial efficiency gains (3.1x faster training,
61% lower memory). Importantly, this is accomplished without
sacrificing fault detection capability; APFD remains high
(0.84-0.93) and early fault detection is significantly improved.

The key to this performance lies in the synergy of the re-
duction stages. Neural feature compression (Ocy,coqe) €nsures
that even after drastic graph size reduction, node embeddings
retain semantic information about test coverage and historical
behavior. The fault-centric pruning stage (£)prune) acts as
a targeted denoising filter, removing spurious dependencies
unlikely to be relevant to faults, thereby sharpening the signal
for the GNN. Finally, spectral coarsening (U ;ysterr) provides
the necessary structural compression by grouping nodes with
similar connectivity patterns, which in the context of tests
often corresponds to those exercising similar code regions or
sharing failure propensities.

Recent analyses by Husakovskyi [6] have highlighted that
while GNNs show promise for TCP, their practical deployment
is hampered by scalability issues and the need for domain-
specific adaptations. Our work directly responds to these
identified challenges by providing a targeted solution that
maintains task-specific performance while achieving scalabil-

ity.
A. Practical Implications and Trade-offs

The integration of Scale-GNN into a CI/CD pipeline
presents a viable path forward for industrial adoption. The
observed efficiency gains mean that a previously intractable
GNN model for a 5000-test suite can now be run periodically
(e.g., nightly) on a single GPU. However, practitioners must
consider the overhead of graph recomputation. As noted in
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Limitations (Section VII), the static graph assumption neces-
sitates rebuilding the reduced graph G’ when the codebase or
test suite changes significantly. For rapidly evolving projects,
this overhead must be weighed against the benefits of superior
prioritization.

Furthermore, the choice of pruning threshold (p) is a
critical tuning parameter. Our use of p < 0.2 was effective
across our datasets, but in practice, this could be adapted based
on test suite characteristics (e.g., flakiness, coverage density).
An adaptive threshold, perhaps learned over time as suggested
by recent work on dynamic prioritization [20], is a promising
direction for future work.

B. Comparison to Alternative Scalability Paths

One might ask why not use established scalable GNN
frameworks like Cluster-GCN or sampling methods. The an-
swer is domain-specificity. While these methods partition or
sample graphs for minibatch training, they are agnostic to the
fault detection objective. Our fault-centric pruning inherently
prioritizes the subgraph most relevant to the learning task,
leading to the observed improvements in early fault detection
(72-88% in first 10% of tests), a metric crucial for TCP
that generic scalable GNNs do not optimize. This domain-
aware approach distinguishes Scale-GNN from general scal-
able GNN techniques surveyed by Chen et al. [25].

C. Limitations Revisited in Light of Results

The strong performance on synthetic and open-source
datasets up to 5000 tests is encouraging, but the limitations
outlined in Section VII delineate the boundaries of our current
validation. The most significant threat remains the generaliz-
ability to real-world, noisy CI environments. The next criti-
cal step is a longitudinal case study within an active industrial
CI pipeline, where factors like flaky tests, environment drift,
and evolving dependencies can be assessed. Recent work on
federated learning for TCP [26] suggests promising directions
for handling distributed and evolving test environments.

VII. LIMITATIONS

Although Scale-GNN demonstrates strong performance
across all evaluated datasets, several limitations constrain its
generalizability:

o Synthetic fault injection. While synthetic fault injection
provides controlled evaluation, it may not fully represent
real-world fault distributions, which often follow long-
tailed patterns or involve subtle state-dependent interac-
tions.

o Static graph assumption. Scale-GNN operates on a
static test dependency graph. In real CI pipelines, cov-
erage traces and dependencies change over time. The
reduction pipeline would need periodic recomputation,
which introduces additional overhead.

¢ Over-compression tradeoffs. For extremely large sys-
tems (10k+ tests), aggressive pruning and clustering may
oversimplify graph structure, potentially eliminating rare
but important failure propagation paths.

o Hardware-sensitive performance. Although memory
usage is reduced significantly, training on very large
graphs (e.g., 10k-20k nodes) may still require GPU-class
hardware.

« Dependency noise. Real-world test graphs often contain
noisy coverage edges due to flaky tests or instrumenta-
tion errors. The pruning stage may treat such noise as
irrelevant, even when it correlates with faults indirectly.

VIII. THREATS TO VALIDITY
A. Internal Validity

Our pipeline relies on synthetic fault injection, which
may not perfectly emulate complex production faults. We
attempted to mitigate this by injecting faults across multiple
node types and varying failure intensities, but the artificial
distribution may still introduce bias. Following recent bench-
marking guidelines [24], we included diverse fault patterns but
acknowledge this limitation.

B. External Validity

While our datasets include up to 5000 test cases, industrial
test suites may exceed tens of thousands. The effectiveness of
Scale-GNN on extremely large enterprise-scale graphs must
be validated further. Additionally, real-world test dependencies
are influenced by execution environments, build systems, and
flakiness, which were not modeled in our experiments. Recent
industrial studies [13] highlight these environmental factors as
critical for practical deployment.

C. Construct Validity

APFD and Recall@10% are widely adopted in TCP re-
search; however, they do not capture test execution cost
or runtime variance. A prioritization strategy may achieve
high APFD but still be suboptimal in systems where test
runtime differs significantly across cases. Future work should
incorporate cost-aware metrics as explored by Liu et al. [21].

D. Conclusion Validity

All experiments were executed on controlled hardware (one
GPU, fixed runtime environment). Performance measurements
may vary across different machines and CI environments.
Additionally, repeated runs were averaged, but randomness in
the GNN and reduction stages may introduce variance. We
conducted 10 runs per experiment to mitigate this threat.

IX. CONCLUSION

We presented Scale-GNN, a scalable fault-aware GNN-
based TCP framework that dramatically reduces graph size
while preserving accuracy. Using neural compression, fault-
centric pruning, and spectral coarsening, Scale-GNN scales
GNN-based prioritization to thousands of tests. Experiments
confirm strong APFD scores, excellent early-fault detection,
and major reductions in runtime and memory.

Future work includes adaptive pruning thresholds, integra-
tion of dynamic graph updates inspired by temporal GNN
approaches [20], real CI/CD pipeline integration with cost-
aware metrics, and exploration of explainable Al techniques
[22] to enhance trust in industrial deployments.
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