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Abstract—Calorie burn prediction plays a crucial role in fitness
assessment and personalized exercise guidance. This study applies
XGBoost regressor with feature selection and SHAP (SHapley
Additive exPlanations) analysis to predict calories burned in an
exercise session, using physiological and activity-based features
for training model. Feature selection was conducted using corre-
lation analysis and Variance Inflation Factor (VIF) screening to
reduce redundancy and improve interpretability, resulting in a
simplified 5-feature model that balances performance and model
complexity. While the full-feature XGBoost regressor achieves the
highest predictive accuracy, the proposed five-feature XGBoost
regressor demonstrates similar performance with an MAE of
2.19, an MSE of 9.98, and an R’ of 0.9972, while reducing
input dimensionality. Model interpretability is further enhanced
through global and local SHAP analysis, revealing the significant
influence of heart rate and duration on predictions. These results
indicate the potential of gradient boosting models for session
calorie burn prediction while suggesting their applicability in
fitness tracking systems and personalized exercise guidance
system.

Index Terms—Calorie burn prediction, Personalized fitness,
XGBoost, VIF multicollinearity, SHAP analysis

I. INTRODUCTION

Exercise is any form of physical activity that helps improve
health, fitness, and overall well-being. It includes activities
such as walking, running, cycling, swimming, or strength
training. Public health organizations, such as the WHO, recom-
mend a certain volume and intensity of exercise that can lower
the risk of chronic diseases. Children and adolescents should
at least do 60 minutes of moderate to high intensity exercise
3 times a week, and adults should do 150 to 300 minutes
of moderate-intensity aerobic physical activity throughout the
week, though these recommendations are not being followed
and physical activity levels are in constant decline [1], [2].

The growing awareness of the adverse effects of sedentary
lifestyles, such as obesity, diabetes, and stress, has been
increasingly recognized by individuals, prompting greater at-
tention to health awareness. Over the past decade, a significant
rise in exercise trends has been observed in response to the
need to maintain well-being. To effectively organize physical
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activities and meet caloric requirements, the accurate estima-
tion of energy burn is deemed essential. Precise estimation of
an individual’s calorie burn is considered vital for tailoring
personalized fitness programs, managing obesity and chronic
diseases, and optimizing athletic performance [1], [2].

Traditionally, predictive equations such as Harris-Benedict
and Mifflin-St Jeor helped in accounting for basal energy
burn but assumed a fixed and linear relation, thus were not
able to address the inter-individual heterogeneity (fitness and
body composition) and intra-individual context (temperature
and metabolism) [4], [5]. Doubly labeled water (DLW) and
indirect calorimetry (IC) are widely regarded as the gold
standard for measuring energy burn. DLW is recognized as
a highly accurate method for measuring session energy burn,
but is limited by cost and complexity for routine use [15].
Likewise, studies highlight IC as the preferred method for
estimating resting energy burn, but it is limited in its use due to
equipment, training requirements, and patient conditions [6],
[16]. Both these methods show high precision, but due to the
limitation of routine practical use, attention should be shifted
towards sensor-based and ML algorithms to estimate session
energy burn.

Wearable devices such as smartwatches utilize sensor data
(accelerometer and heart rate), but systematic failure to address
activities, population, and device brands necessitates the need
for better methods that are more reliable and systematically
evaluated in a controlled dataset [7]. A recent study developed
a machine learning approach for energy burn using sensor data
from smartphones, smartwatches, and data-gathering apps. The
Body Mass Index (BMI) is targeted for people whose age is
more than 18 years old, with BMI value of > 30, i.e., an
obese population. The study demonstrated a root mean square
error (RMSE) ranging from 0.28 to 0.32 across various sliding
window sizes [17]-[19]. This finding supports integrating BMI
into energy burn models for wearable and mobile sensor data,
suggesting improved prediction accuracy, particularly for adult
obese populations.

Recent studies have supported the need for standardized

Proceedings of International Conference on Innovation in Computing, Science, Engineering and Technology 2025

Page 15



Rajat et. al, Calorie Burn Prediction using XGBoost with Feature Selection and SHAP Analysis

and validated energy burn estimation through machine learning
algorithms that effectively utilize multimodal sensor data [8],
[9]. ML models can capture complex, non-linear relationships
between physiological signals and energy burn that traditional
methods cannot represent. For instance, tree-based ensemble
methods have demonstrated remarkable success in modelling
the intricate interactions between heart rate, accelerometry
data, and individual characteristics such as BMI, age, and
gender [10], [17].

Extreme Gradient Boosting (XGBoost) is seen as a reliable
algorithm for its superior performance in handling complex,
high-dimensional, and non-linear relationships in medical
datasets [11]. A study proposed Gradient Boosting Decision
Trees on Medical Diagnosis over Tabular Data. LightGBM,
Catboost, and XGBoost were compared with traditional and
deep neural networks, achieving ROC AUC up to 0.98 across
datasets, outperforming TabNet (0.92). This study highlights
the gaps of ensemble deep-learning methods and favours
gradient boosting decision trees for tabular medical data [14].
Recent work on calorie burn prediction using heart rate and
duration supports the use of XGBoost regressor. Study [19]
reported an MAE of 2.71, while [20] achieved an MAE
of 1.480 with R? of 0.998. Similarly study [18] reported
MAE 1.48 and R? of 1.00, and incorporated explainable Al
technique to interpret the model prediction. However, these
studies primarily focused on maximizing predictive accuracy
and did not account for the impact of feature redundancy on
model interpretability. Conversely, the studies cited previously
[19], [20] did not attempt hyperparameter tuning or provide
explanations for model predictions.

Feature selection was explored in this work primarily to
reduce redundancy and improve interpretability, which is
tackled through correlation analysis and Variance Inflation
Factor (VIF) screening to improve model stability and inter-
pretability. The primary objectives of this work is to construct
an XGBoost-based framework incorporating feature selection
based on VIF to investigate the tradeoff between model
performance, input dimensionality and model interpretability.
Furthermore, SHAP (SHapley Additive exPlanations) is em-
ployed to provide both global and local explanations of model
predictions, enhancing transparency and insight into feature
contributions [12].

The key contributions of this paper are:

o To examine the tradeoff between the predictive perfor-
mance and feature dimensionality by comparing full and
feature selected models.

e Model interpretation using Explainable AI (XAI) frame-
work, SHAP.

The rest of the paper is organized as follows: Section II
includes the details of the entire process and the model used.
Section III discusses the detailed results. Finally, a conclusion
is in section IV.

II. METHODOLOGY

The proposed model uses machine learning algorithms to
predict the session calorie burn of individuals using physio-

logical and activity-based features. The model utilizes different
machine learning pipelines, which are discussed in detail.
The dataset utilized for training the predictive model was
obtained from Kaggle [3]. The dataset contains 15,000 sam-
ples and nine variables. The dataset contained six numeri-
cal features (Age, Height, Weight, Duration, Heart_rate, and
Body_Temp), 1 categorical feature, gender, and target variable,
Calories, as shown in Table I. The categorical feature was
label-encoded into a numerical feature for better interpretation
of the feature relation with the target variable and model
generalization. Table I presents the descriptive statistics of all
features, including the mean, standard deviation, and range,
providing an overview of the dataset distribution and variabil-

ity.

TABLE I
SUMMARY STATISTICS OF THE DATASET FEATURES USED FOR CALORIE
PREDICTION.
Feature Description Type Mean + | Range
SD
Binary indicator:
Gender Male(0) or Fe- | Categorical 0 and 1
male(1)
Age of the in-
Age dividual in years | Continuous| 42.78 =+ | 20-79
(year) 16.98
Height of the in-
Height dividual in cen- | Continuous| 174.46 + | 123-222
timeters (cm) 14.25
Weight of the in-
Weight dividual in kilo- | Continuous| 74.96 =+ | 36-132
gram (kg) 15.03
Time spent exer-
Duration cising in minutes | Continuous| 15.53 =+ | 1-30
(min) 8.32
Average  heart
Heart_rate rate dur}ng Continuous | 95.51 £ | 67-128
exercise session
9.58
(bpm)
Average body
Body_Temp SMPCTAUIC 1 continuous| 40.02 + | 37.1-41.5
during  exercise
. ] 0.77
session(Celsius)
Amount of calo-
Calories ries burnt during | Continuous| 89.53 =+ | 1-314
exercise session 62.45
Calculated as
BMI (de- | weight (kg) / | Continuous| 24.34 =+ 19.22—
rived) height (m?) 1.55 29.06

A. Feature Selection

A correlation heatmap illustrates the pairwise relationships
among the features, as shown in Fig. 1. Strong correlation
was observed between height and weight as well as between
exercise duration, heart rate and body temperature. These re-
lationships indicate the presence of feature redundancy within
the dataset.

To gain a deeper understanding of these relationships mul-
ticollinearity was analyzed using VIF and the results are
presented in Table II. The analysis reveals that height and
weight exhibit VIF values exceeding 10, signifying strong
multicollinearity. To reduce the feature redundancy while
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Fig. 1. Correlation heatmap of features used to predict calorie burn.

preserving relevant information, these features were combined
into Body Mass Index (BMI). Duration and body temperature
were also found to be strongly collinear with VIF values
surpassing 5. Thus, exercise duration was retained as it directly
indicates the workload while body temperature was excluded.
Heart rate showed moderate collinearity, with a VIF value just
below 5, so it was retained without transformation. Therefore,
the final feature set includes gender, age, duration, heart rate
and BML

TABLE II
VIF TABLE TO DETECT MULTICOLLINEARITY BETWEEN DIFFERENT

FEATURES.
Feature VIF
Gender 2.81
Age 1.12
Height 14.28
Weight 18.65
Duration 8.48
Heart_rate 3.42
Body_Temp | 6.05

Fig. 2 presents a box plot of the features, revealing the
presence of outliers in the heart rate and BMI features. The
Interquartile Range (IQR), a widely recognized statistical
method for outlier detection [13], was employed to identify
these outliers within the dataset. Session data exceeding 1.5
times the IQR from the first quartile (Q1) and third quartile
(Q3) were excluded from the dataset. Given the sufficiently

large initial dataset comprising 15,000 observations. This
process resulted in a reduced dataset containing 14,316 session
data.
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Fig. 2. Box plot of 5 selected features to detect outliers.

Standard normalization was applied to all selected continu-
ous features to achieve a mean of 0 and standard deviation of
1, ensuring uniform feature scaling for the XGBoost regressor.
The 14,316 data points were divided into training and testing
sets at an 80:20 ratio, resulting in a training set comprising
11,452 data points and a testing set containing 2,864 data
points.

B. Regressor Model

The primary aim of this paper is to develop an XGBoost
regressor, which is recognized for its superior performance
in managing complex, high-dimensional, and non-linear rela-
tionships within medical datasets [14]. For the purpose of this
study, the XGBoost Regressor was evaluated across various
feature sets, including a configuration with all seven original
features without feature selection, a reduced set of five features
comprising gender, age, duration, heart rate, and BMI, and
a further reduced set of four features including gender, age,
duration, and BMI.

The hyperparameters of the XGBoost regressor were opti-
mized using GridSearchCV with 5-fold cross-validation, with
the results summarized in Table III. The model selection metric
used was Mean Squared Error(MSE) and the final model was
retrained on training dataset using the best hyperparameters.

The model evaluation was performed on the test dataset
using Mean Absolute Error (MAE), Mean Squared Error
(MSE), and R

III. RESULT AND DISCUSSION

The XGBoost regressor was selected as the appropriate
model for training on this dataset. The XGBoost regressor
was assessed across three distinct experiments, each utilizing
a different number of features: initially with all seven original
features, followed by a reduced set of five features, and finally
with four features.

The performance of the model was evaluated using Mean
Absolute Error (MAE), Mean Squared Error (MSE), and R?
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TABLE III
SUMMARY OF HYPERPARAMETER TUNING OF XGBOOST REGRESSOR
USING 5-FOLD CROSS VALIDATION (CV = 5).

Parameters
n estimators
learning rate

Range Best
range(0, 100, 5) | 95
[0.01, 0.1, 0.2] 0.1

max depth range(2, 20, 2) 6
subsample [0.8, 1.0] 0.8
colsample_bytree | [0.8, 1.0] 0.8
features [7, 5, 4] 5

on test data. An additional parameter CV MSE reflects the
variability in models performance in different folds (K=5) of
training data during hyperparameter tuning. Table IV presents
a comparison of the XGBoost regressor’s performance across
three different feature configurations: 7 features, 5 features,
and 4 features. The model achieved the best performance
while including all 7 original feature with MAE of 1.15, MSE
of 3.25, and R2 of 0.9990, indicating excellent predictive
accuracy and variance capture. The corresponding CV MSE
of 3.554140.2825 on training data for hyperparameter tuning,
suggests stable performance across folds. The model with
five features (Gender, Age, Duration, Heart Rate, and BMI)
shows a moderate decline in performance, with an MAE of
2.19, MSE of 9.98, and R? of 0.9972. The CV MSE of
11.0388 £ 0.2080 remains relatively low, indicating consistent
results during training, though less accurate than the 7-feature
model. The 4-feature model that excludes heart rate exhibits
the poorest performance, with an MAE of 8.65, MSE of
148.86, and R? of 0.9587, reflecting a significant drop in
accuracy. The CV variability of 149.7932 4 3.0804 is notably
higher, suggesting greater instability across training folds.

The results highlight a trade-off between performance and
feature count, with the 7-feature model offering the highest
accuracy, while the 5-feature model provides a balanced
compromise with near-comparable predictive performance and
reduced input dimensionality. The 4-feature model, while still
capturing substantial variance (R? = 0.9587), underperforms,
likely due to the loss of a critical predictor like Heart Rate.
Consequently, the 5-feature model was selected as a practical
and efficient configuration balancing performance and model
complexity.

TABLE IV
COMPARISON OF PERFORMANCE PARAMETERS OF THE XGBOOST
REGRESSOR WITH DIFFERENT FEATURE CONFIGURATIONS.

No. of features | MAE | MSE R? CV MSE

7 1.15 3.25 0.9990 | 3.5541 4+ 0.2825

5 (proposed) 2.19 9.98 0.9972 | 11.0388 + 0.2080
4 8.65 148.86 | 0.9587 | 149.7932 + 3.0804

Once the optimal number of features was determined,
various models were assessed on the dataset, including the
proposed XGBoost regressor, the Random Forest model, and
Lasso regression with a polynomial degree of 3. As presented
in Table V, the proposed XGBoost regressor emerged as the

best-performing model, achieving an MAE of 2.19, an MSE of
9.98, and an R? of 0.9972. The Random Forest model followed
with a comparable performance, recording an MAE of 2.56, an
MSE of 13.93, and an R? of 0.9961, closely aligning with the
XGBoost regressor results. Lastly, Lasso regression exhibited
the lowest performance among the three, with an MAE of
3.10, an MSE of 18.99, and an RZ of 0.9947.

TABLE V
COMPARISON OF PERFORMANCE PARAMETERS OF DIFFERENT MODELS
Model MAE | MSE | R?
Random Forest 2.56 13.93 | 0.9961
Proposed model 2.19 9.98 0.9972
Lasso Regression(polynomial degree = 3) | 3.10 18.99 | 0.9947

Fig. 3 illustrates the actual versus predicted calorie burn
values obtained using the proposed XGBoost regressor with
selected 5-feature model.The close alignment of the predicted
values with the identity line (slope 1 and intercept 0) indicates
strong agreement between the predicted and the ground-
truth values. This behavior is consistent with the quantitative
evaluation on the test set, where the model achieved an MAE
of 2.19, an MSE of 9.98, and an R? of 0.9972. The linear
relationship further confirms the model’s ability to accurately
capture the underlying relationship between the selected physi-
ological feature and session calorie burn, demonstrating robust
predictive performance.

Actual vs Predicted Calories
300

Actual Calories

Fig. 3. Actual versus predicted values of XGBoost regressor with 5 Selected
Features. The red dashed line represents the identity line.

The residual curve presented in Fig. 4 demonstrates that the
majority of the data points are densely clustered within the
+5 range, suggesting a high level of accuracy and minimal
bias in the predictive model. This tight clustering around
zero indicates that the model’s predictions are closely aligned
with the actual values, reflecting its effectiveness in capturing
the underlying patterns of the dataset. A small number of
data points are observed to extend beyond this dense re-
gion, sparsely distributed within the +10 range, which may
represent outliers or instances where the model encounters
greater variability. This distribution underscores the model’s
overall robustness, with the limited spread of residuals further
supporting its reliability in estimating calorie burn, consistent
with the high R? of 0.9972 and low MAE of 2.19 achieved
with the 5-feature XGBoost regressor.
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Residual Plot

Residuals
'

Fig. 4. Residual graph of the proposed XGBoost regressor based on 5 Selected
Features

In Fig. 5, the learning curve for XGBoost regressor is
presented, with RMSE plotted against the number of boosting
rounds. Rapid convergence was observed within the first 20
rounds, during which the RMSE was reduced from approx-
imately 55 to 10, indicating that key patterns were effec-
tively captured in the initial stages of training. A minimal
gap between training and validation RMSE was maintained
throughout, indicating strong generalizability and that over-
fitting was avoided. A balanced bias-variance tradeoff was
achieved, confirming that the selected hyperparameters and
boosting strategy contributed to model stability and reliable
performance.

XGBoost Learning Curve

— Training RMSE
Validation RMSE

0 20 40 60 80
Boosting Round

Fig. 5. Learning curve boosting round of the proposed XGBoost regressor.

The SHAP analysis was conducted to quantify and visu-
alize each feature’s contribution to the XGBoost regressor’s
predictions in an interpretable, global context in Fig. 6 and
instance-level in Fig. 7. The color gradient further illustrates
how high (red) versus low (blue) feature values correspond
to positive and negative impacts, respectively. Fig. 6 presents
the SHAP summary plot, which ranks features by their mean
absolute SHAP values to reveal overall importance.

Based on the analysis, duration and heart rate are the
most influential features. Physiologically, this behavior is
expected, as calorie burn during physical activity is primarily
governed by exercise duration (total work performed) and
heart rate, which serves as a proxy for exercise intensity and
oxygen consumption [21], [22]. Higher values of both features

consistently push predictions toward increased calorie burn,
indicating a strong positive association.

Age also demonstrates a positive SHAP trend, with a
narrower contribution range, suggesting higher age is asso-
ciated with increased predicted calorie burn within the studied
population. This effect may reflect age-related differences in
cardiovascular response and metabolic cost under comparable
activity conditions, as reported in prior physiological studies
[22], [23]. In contrast, BMI and gender exhibit SHAP values
tightly clustered around zero, indicating a limited role in
explaining prediction variability. Although BMI is known to
influence absolute calorie burn due to increased body mass
[23], its near zero SHAP importance can be attributed to
the limited variability of BMI in the dataset (mean 24.34 +
1.55), which predominantly represents a slightly overweight
population. Similar observations have been reported in recent
explainable Al studies on calorie burn, where activity-based
features dominate model explanations in relatively homoge-
neous populations [24], [25].
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Fig. 6. Global SHAP beeswarm plot showing feature importance for calorie
burn estimation using XGBoost regressor

Fig. 7 illustrates the contribution of features on the predic-
tion of calorie burn on the individual data point. The model’s
base value was E[f(z)] = 93.639, and the final prediction
of 140.386 was obtained by summing the individual SHAP
contributions: duration of +51.04, heart rate of +3.76, and
gender of +0.61 increased the prediction, whereas age (—7.68)
and BMI (-0.97) decreased it.

= 1401386
I

+51.04
. 1376

‘ +0.61
% 100 110 120 130 140
ETfX)]

Duration

Heart_Rate

BMI -0.97

Gender

Fig. 7. Local SHAP waterfall plot illustrating feature contribution for
individual prediction.
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IV. CONCLUSION

This study introduces a machine learning framework for
session calorie burn prediction using an XGBoost regressor
with an emphasis on model simplicity and interpretability
while maintaining competitive prediction performance. Feature
selection was performed using correlation matrix and VIF
screening, resulting in the combination of height and weight
into BMI and the exclusion of body temperature.

Experimental results demonstrate that the 7-feature model
achieved the highest predictive accuracy, while the feature
selected 5-feature model attained comparable performance
with an MSE of 9.98, an MAE of 2.19, and R? of 0.9972, de-
spite utilizing fewer and less redundant features. Comparative
analysis of proposed XGBoost regressor with Random Forest
and Lasso regression confirmed the effectiveness of gradient
boosting models on non-linear and tabular data.

Model interpretability was enhanced through SHAP, fa-
cilitating both global and local interpretations. Globally, the
analysis highlighted activity-based data, such as heart rate and
duration, as significant predictors of calorie burn, exerting a
stronger influence compared to physiological data like age,
gender, and BMI, which demonstrated a marginal impact.
Locally, individual predictions were broken down into feature-
level contributions, enabling a transparent assessment of each
feature’s role in the prediction process.

Overall the findings highlight a practical trade-off between
predictive performance and model simplicity, where a reduced
feature set offers improved interpretability. For future work,
the model can be evaluated on the diverse population incor-
porating proper BMI range. Additionally, integration of edge
computing is proposed to enable seamless deployment of the
model on resource-constrained devices such as smartphones,
smartwatches, and IoT sensors. This necessitates further op-
timization of the model to operate efficiently under limited
memory and processing power, paving the way for practical,
on-device calorie burn estimation.
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