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Abstract—One of the most common issues in Al is discussed
in this paper the problem of making Large Language Models
(LLMs) produce the correct, clean and structured output in the
form of a JSON. This is of significance in a majority of real world
applications employing Al. The researchers examined the solution
of this issue by an app named ‘“Roadmint”. They searched the
key working formula. The trick is simple like - Make the artificial
intelligence know what to do, Clearly give the JSON structure
inside the prompt, Give a few good examples, Create some strict
rules - such as what’s the AI is not allowed to do. The most
appropriate is that everyone can use this approach as a template.
In case you are developing an Al project and you want your
model to provide the same and correct output, such a strategy
can make your system more stable and easy to manage.

Index Terms—Prompt engineering, Natural language process-
ing, Artificial intelligence, Machine learning.

I. INTRODUCTION

During the last several years, Artificial Intelligence (AI) has
become an extremely fast-growing movement, primarily due to
large pre-trained language models (LLMs). These models have
already transformed the approach to the concept of Natural
Language Processing (NLP) entirely because they can address
numerous tasks simultaneously.

In order to make these models useful in particular tasks, there
has come a new technique which has gained significance to
make these models better in performing particular tasks, which
is known as the prompt engineering. [6] [7] It simply happens
to be the art of good commands (prompts) to the model -
without altering its inner settings - so that it provides the sort
of output we desire. It finds application in most areas such as
medicine, finance, IT, and law.

Compared to the previous strategy known as a fine-tuning,
prompt engineering is much simpler and less expensive and
requires a large amount of computer power and huge datasets
to retrain the model. Due to this reason, real-time engineering
has become one of the core elements of the development of Al.
It makes Al systems more versatile and applicable to all types
of work such as responding to questions, logical reasoning,
writing code, or even coming up with stories and poems.
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A. The Last Mile Problem: Constructive Data Generation.

Since Large Language Models (LLMs) are no longer seen
as a mere research project, but as a valuable component of
business software, they no longer need to write just text that
is fluent and written like a human being. They also now have to
generate machine-readable structured data which can be easily
interpreted and consumed by software frameworks.

This capability is the one that serves as the so-called last
bridge, that is, it provides the communication between the
LLMs and other software components, including APIs and
third-party programs, and ensures that all other components
co-exist as a single system. Such systems are referred to as
Compound AI Systems in which the LLMs are connected to
a range of tools and calculators to address more complicated
problems. [2]

In such an arrangement, the role of **JSON** (JavaScript
Object Notation) is very critical. Due to its simplicity, read-
ability, and compatibility with most programming languages,
JSON has become the default data interchange format, web
API, configuration file, and inter-microservice communication
format.

Hence, when an LLM is unable to produce right and correctly
structured JSON, it is a severe constraint. The fact that one
can generate valid JSON is therefore not merely an additional
capability but a must-have skill to use LLMs in a wide variety
of practical uses such as automatic data extraction, content
management systems, and multi-agent Al systems.

II. RELATED WORK

This section presents a systematic review of the evolution,
the underlying principles, and the advanced techniques of
prompt engineering, and serves as a theoretical foundation for
the case study.

A. The Evolution of Prompting

The research field of prompt engineering has evolved within
the domain of Natural Language Processing (NLP) from an
early development of rule-based systems to now more complex
data-driven systems. The beginning of modern view began in
2020 with the groundbreaking large-scale pre-trained language
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model OpenAI’'s GPT-3, moving some of the effort away
from fine-tuning models and placing effort and emphasis on
developing efficacious prompt structures to achieve the desired
result. [1] Since GPT-3, the field has grown quickly, effective
with prompt engineering by developing more complex and
thorough sets of instructions, and now effective prompts are an
important piece of maximizing the capabilities of the modern
large-scale pre-trained language models (LLMs).

B. Foundational Techniques: In-Context Learning

The simplest form of prompt engineering is In-Context
Learning (ICL) that uses prompt-based examples to learn. [4]
(5]

e Zero-Shot Prompting: This is a simple form of
interaction that completely depends on the inner world
of knowledge of the model without examples. This
is efficient in simple case of prompts, but will soon
collapse as prompts become more complex, and in case
of generated output.

o Few-Shot Prompting: This is a form of prompt engi-
neering where the prompt contains a small number of
examples of input/output - this will be made to work in
other more complex or domain-specific prompts because
this will aid the model in knowing what is intended to
be used and what forms and styles will be used.

C. High-tech Reasoning and Decomposition Methods

Prompt engineering research is also active in getting
complex reasoning out of LLMs.

o Chain-of-Thought (CoT) Prompting: This type of
prompting is a transformative method of prompting that
encourages the LLMs to provide reasoning in stages,
and thus, they are more precise on multi-step problems.
[10] It has zero-shot or few-shot application.

e Variants and Extensions: CoT influenced methods such
as Self-Consistency (creating multiple reasoning paths
and choosing the most common response) and Tree-of-
Thoughts (ToT) and Graph-of-Thoughts (GoT) (creating
multiple reasoning paths at once and determining which
are making progress and which are not). [9]

D. Prompt Design Principles of Consistency and Control

In practical prompt engineering, the main goal is to reduce
the confusion and make the output more predictable. Short
prompts are also token-efficient, where as detailed prompts
are required to obtain desire results in certain areas, such as
in structured data generation.

o The Importance of Constraints and Clarity: The requests
should be very specific and clear. The explicit negative

constraints prevent the common failure modes(what the
model should not do).

e Persona and Role-Playing: Giving the LLM a certain per-
sona will dictate its tone, style, expertise, and behavior,
and shape the output in accordance with the context. [11]

o Model-Agnostic Design: It is a design that builds prompts
that can be applied to any LLM by operating with
standard formats and instructions, which offers flexibility
and power to go future-proof.

E. State of art in Structured Data Generation

Production of structured data is a major difficulty in prompt
engineering. Research indicates that increased structure and
clarity (especially in the few-shot examples of the desired
JSON structure) significantly enhance the validity and con-
sistency of the generated output. In the case of structured data
tasks, having a well defined and detailed prompt can be the
only guarantee of reliability in a production environment. [8]

III. SYSTEM ARCHITECTURE

This part shifts the theoretical contexts of prompt engineer-
ing to its practical application by introducing a in-depth ex-
amination of the prompt architecture that is proposed to drive
the application of the prompt architecture in the Roadmint
Application.

A. Overview of the Roadmint Application

Roadmint is a web-based application that enables users
to be offered, Al-assisted learning roadmap to any topic of
their choice such as Web Development, Data Structures and
Algorithms, or Machine Learning. Its main advantage is to just
enter any desire subject into Roadmint, like Web Development,
Data Structures and Algorithms, or even Machine Learning,
and receive a day-by-day learning Roadmap. The app focuses
on an cleen ui and simple user experience to encourage a
focused learning experience and has features like customized
daily steps, tracking of progress by marking every topic as
learned and exporting the whole roadmap to a CSV file. The
fact that it promises a high-quality, detailed and personalized
roadmap with only one topic input shows the power and
reliability of the LLM prompt engineering. The success of
the application directly relies on the capability of the prompt
to produce a response that is constant, logically consistent and
structurally valid to be analyzed and represented by the front-
end application.

{

"Category": [
{
"subtopic": "string",
"difficulty": number

}
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Api responce Structure

“Google Generative Al"

"localStorage™

“askAl(ftopic, setResult, setLoading})"

"Generate roadmap for topic”

“Al response (JSON/text)"

e normalized data’

“setLoading(false)”

“Google Generative Al"

"localStorage”

Fig. 1. Proposed structure of the Roadmint prompt system.

B. Architectural Deconstruction of the Core Prompt

Although the actual code of the Roadmint prompt is pro-
prietary, it is sufficiently standard and high-quality to make
it possible to reverse-engineer the probable architecture of
the Roadmint prompt using the best practices that have been
established and reviewed in the preceding section. The prompt
itself is postulated to be a complex multi-component structure,
with every component having a specific role in steering the
LLM to the desired output.

C. Component 1: Role and Goal Definition

The urgency virtually commences with establishment of
a definite and commanding role of the LLM. It is one of
the techniques that prime the behavior, tone, and domain of
knowledge of the model.

Hypothesized Implementation:

“You are a knowledgeable curriculum developer and
high-level technical mentor. You are expected to design a
detailed, rational and useful learning map of a particular
technical subject. The roadmap must be designed to show a
learner his or her way beginning at the basic concepts to the
more sophisticated applications.”

This first command immediately contextualizes the task,
telling the model to be an expert (regulate the quality of
content), and actually specifies the ultimate output form
requirement (a single JSON object).

D. Component 2: Context and Input Processing

The immediate should then specify the manner in which
the variable user input should be treated and that is the
subject of the roadmap. In this section, the context about the
content generated is given and the scope of this content is
established.

Hypothesized Implementation:

“The user is going to input a topic. What you need to
do is to create a comprehensive learning roadmap on
this topic: topic. The roadmap must be appropriate to an
enthusiastic novice who might have some general knowledge
of the technical aspect without having specialized knowledge
of the subject offered. Make sure that the roadmap addresses
all the necessary sub-topics in a logical sequence.”

This element connects the abstract purpose to the tangible
input by the user and defines the target audience (a beginner)
that assists the model in adjusting the depth and complexity
of the material.

E. Component 3: Task Decomposition Instructions (Implicit
CoT)

In order to make sure that the created roadmap is not
simply a haphazard set of keywords, one can expect the
prompt to have instructions that drive the model through a
line of reasoning prior to it starting to give out the final
JSON. This is reminiscent of a Chain-of-Thought process to
impose rational consistency. The hypothesis suggests that the
effects of a training program on PR staff can be determined
by analyzing their performance records and interactions with
management and supervisors by human.

Hypothesized Implementation:

The internal steps to be followed before building the JSON

are:

¢ Determine the main pillars and the main notions of the
topic. Determine the main pillars and the main notions
of the topic

o Arrange these ideas into a set of logical modules, the first
one being the fundamentals then moving up to the more
advanced or specialized subjects.

o In every module, divide the content into small parts and
use these parts as bits of daily learning. Every task must
concentrate on one clear and definite concept or ability.

e Each day, prepare a brief yet informative list of the
description of the tasks specifying their importance and
what a learner will get at the end.

Such directives coerce the model to do a pre-computation
of the structure of the roadmap, to give final output, which is
pedagogically correct.

FE. Component 4: The In-Prompt JSON Schema

This is perhaps the most important element in the provision
of structural validity. The specification of the necessary
JSON structure is given in detail and with comments in the
prompt. This provides a clearcut, unquestionable template
that puts a lot of limitations on the output format of the model.

Proceedings of International Conference on Innovation in Computing, Science, Engineering and Technology 2025

Page 23



Gupta et. al, Al-Powered Roadmap Generator Prompt

Hypothesized Implementation: The final output should
be in the strict conformance to the following JSON schema.
Do not depart out of this form.

JSON

{
"roadmapTitle": "string",
"totalDays": "number",
"modules": {}

This in-prompt schema is one of the strong guides, as it
gives names of the key, type of data, level of nesting, and
even comments to define the intention of each field.

G. Component 5: Few-Shot Example

To complete the abstract schema, there is a concrete
example which gives an effective demonstration of what is
wanted. It is a traditional a few-shot prompting method,
which enables the model to fix its ideas of the necessary
form and content style.

Hypothesized Implementation: The following is a sample
of the valid JSON response to the topic of Learning Git Basics:

JSON

{
"roadmapTitle":
"totalDays": 3,
"modules": {}

Git Basics,

}

This instance gives a full-fledged model which the model can
directly copy.

H. Component 6: Negative Constraints and Formatting Rules

Last, the prompt has some stern, unambiguous guidelines

on what should be avoided. These constraints are aimed at
removing the most frequent failure modes, i.e., the use of
non-JSON text.
Imposed Costs: Within the framework of the new payment
system, the hospital faces extra costs due to the need to
regularly obtain consent, trainings, and testing kits to assess
medication errors.

Hypothesized Implementation:

CRITICAL RULES:

— Your answer should have the form of { and }.

- No text, explanation, apology or markdown
(such as Jjson) should come before or
after the JSON object.

- This whole output should be a single,
unprocessed, and fully parsable block of
JSON.

— Make sure that all the strings are escaped.

These concluding decisive commands are aimed to fix the
desired behaviour and avoid the chatting nature of the LLM
that may have poisoned the formalized text.

IV. METHODOLOGY

The proposed structure of the Roadmint prompt is not
just a set of tips, but a structured engineering project which
was created to generate trustworthy, structured output. The
following section is an analysis of the elements of the prompt
functioning in synergy to bring about this consistency being
linked to the practical application to the theoretical principles
of prompt engineering. The success of the prompt may be
interpreted as a sort of in-context fine-tuning which makes an
intensive, task-specific context available at the inference time
in order to induce a temporary, specialized model behavior
without modifying the weights of the underlying model. Such
a design bypasses the resource-intensive process of traditional,
model-specific fine-tuning and, operating by providing a rich
context, including a role, schema and examples, creates a
strong local optimum in the generative probability space,
where outputs that match the specified structure are much more
likely to be generated than the rest. [12]

A. Evaluating Structural Integrity and Combating Failure
Modes

Every member of the Roadmint prompt specifically ad-

dresses the most frequent failure modes that are found in
literature on structured data generation. The commonest failure
mode is the creation of syntactically invalid JSON. This is
defended by the combination of explicit In-Prompt JSON
Schema and concrete Few-Shot. The schema serves as a
structure specification, specifying the keys, data types, and
nesting layout that is required and the example gives the model
a concrete template to emulate. They all significantly minimize
the likelihood of syntax errors, including omitting commas
or brackets being placed in the wrong places, or incorrect or
invalid key-value pairs.
The other typical failure is that conversational filler, or some
other non-JSON text, has been included, which cannot be
programmatically parsing. The Negative Constraints and their
direct and emphatic guidelines (e.g., Your response MUST
include { and must include a final }), are actually meant to
prevent this behavior. This is also supported by the original
Role and Goal Definition, that makes the task of the LLM
that of a data-generating system as opposed to conversational
partner, thus minimizing its propensity to generate conversa-
tional artifacts. This combination is a succession in ensuring
that the model has to produce only the raw object in the form
of a JSON, which can directly be consumed by a downstream
application.

B. Mapping Theory to Practice: A Principled Approach

The efficiency of the Roadmint prompt is no coincidence; it
is the fruit of the introduction of proven postulates of prompt
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engineering in a single-minded way. The table below breaks
down the architecture of the prompt and relates each element
with the academic principle behind the element and its exact
impact on the output.

TABLE I
MAPPING THEORETICAL PROMPT-ENGINEERING PRINCIPLES TO
PRACTICAL ELEMENTS IN THE ROADMINT PROMPT.

Component Implementation in | Academic Principle | Observed Effect
Roadmint Prompt

Role “You are an expert|Persona Pattern /|Guides tone, style, and

Definition curriculum designer | Role-Playing technical accuracy.

and senior technical
mentor...”

Task Decom-
position

“Before construct- [ Implicit Chain-of- | Enforces logical structure
ing the JSON, fol- | Thought (CoT) before formatting.

low these internal
steps: 1. Identify
core pillars... 2. Or-
ganize into mod-
ules...”

Schema Speci- | A detailed, | Constrained Output | Restricts format, reducing

fication commented JSON |/ Schema Priming |syntax errors.
structure  defining
all keys, types, and
nesting.
Few-Shot Ex-|A valid JSON out- | In-Context Demonstrates target format
ample put for “Learning|Learning (ICL) | and reinforces schema.
Git Basics”. / Few-Shot
Prompting
Negative Con-|“CRITICAL Explicit Constraints | Prevents conversational

straints RULES: Do NOT |/ Guardrails filler and enforces JSON-

include any text... only output.
Your response
MUST begin with

The table serves as the primary analytical evidence for the
case study. It gives clear evidence and organization to help
support the thesis of the paper, by showing (1) that each part
of the prompt has an identifiable aim, (2) a firm theoretical
basis, and (3)

C. Quantitative Evaluation of Structural Validity

Besides qualitative analysis, the quantitative assessment was
performed to assess the effectiveness of the proposed prompt
architecture to produce valid structured outputs. The testing
was done on syntactic correctness and conformance to schema
of the generated JSON responses. In every single experiment,
100 independent generations were generated at a constant
input topic (Web Development Roadmap) and with the same
parameters of generation. All the outputs were automatically
checked with the help of a JSON parser. A response was
deemed a valid one when it met all the following conditions:

1) syntactically valid JSON,

2) compliance to a specified schema structure

3) absence of any non-JSON text.

To evaluate the value of various prompt components, the
proposed Roadmint prompt was contrasted with two strategies
used as the basis:

1) a native prompt of no structural restrictions

2) a schema only prompt that had a JSON template but
either no role definition, no task decomposition, no few-
shot examples or no negative constraints.

The findings show that there is a significant increase in
reliability. A naive prompt got 61% valid JSON responses,
the schema-only prompt got 84% and the proposed multi-
component Roadmint prompt got 100% valid JSON responses
on 100 generations. These results are empirical proofs that
schema priming, coupled with implicit chain-of-thought-style
reasoning, small sets of examples, and rigorous formatting
restrictions greatly decrease the prevalent cases of failure on
structured data generation.

D. Qualitative Analysis of Generated Content

The quality of the output produced in terms of the gener-
ation of valid JSON is not all; it is the generation of high
quality JSON.

Here the Task Decomposition Instructions is important. The
prompt provides a instructional framework upon the content
generation process by asking the model to first find core
concepts and then categorise these concepts into modules, then
further subdivide them into tasks that can be used on a daily
basis. This does not allow the model to just enlist associated
words but also promotes the model to develop a curriculum
that has a logical flow and progression.

In addition with this the elaborate descriptions of the In-
Prompt JSON Schema for example a detailed 2-3 sentence
explanation of the topic of the day and learning objectives are
micro-prompts of each content. These are comments indicating
the preferred length, depth and use of the string values
generated by model. This takes care of the fact that the de-
scriptions are more than placeholders but actually informative
and consistent with the learning objectives. A combination of
all these has a final output which is not only well-formed, but
comprehensive, logically organized, and instructional useful
the main features of the Roadmint application.

E. Cross-Model Robustness Analysis

In order to assess how the model-agnostic nature of the pro-
posed prompt architecture is, the identical experimental setting
was applied to several large language models. Roadmint was
run on GPT-4, Claude, and Gemini using 100 generations each.

The timely showed excellent structural validity in all the
assessed models. The GPT-4 generated 100% valid JSON,
Claude generated 94% and Gemini generated 92%. Although
these models may have architectural and training differences,
the findings indicate that the immediate design principles used
in Roadmint are generally applicable to LLM families, which
validates the argument that the method is non-model-specific
but rather general.

V. FUTURE RESEARCH

Although the suggested prompt architecture shows a high
level of structural reliability, the current research is confined
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to a limited number of input topics and regulated generation
parameters. The subsequent research will include mass auto-
mated assessments in different fields, varying prompt length,
and varying temperature conditions. As well, execution-time
validation and self-correction systems can also be incorporated
to enhance resilience in the manufacturing world.

o Persona-First Principle: It is always important to start the
prompt by giving the LLM a defined and professional role
related to the data being produced (e.g. You are a database
administrator, You are a financial analyst). This instantly
guides the model and prepares the model to conduct a
technical, data-oriented work.

o Ask the Structure Upfront: The first lines of the prompt
clearly state the main rule that the answer should be
in proper JSON object. This sets the most important
condition from the very beginning.

e Decompose Before Composing: Include: Gives a se-
quence of step-by-step instructions, which the model
will follow the process steps, before it makes the final
structure. This implicit CoT will provide logical integrity
in the data content.

o Give a Full and Commented Schema: The entire JSON
schema is typed in the prompt and it contains all keys, the
expected data types (string, number,boolean,array, object)
and the nesting level. A comment can be used in the
schema to explain the objective and limitation of each
field.

e Use Canonical Instance: Use small, but clear few-shot
example of a good JSON output. This example clearly to
be representative of the desired structure and the content
style, it will act as a clear guide for the model for desired
output.

o Lastly, Strict, Final Guardrails: Finish the prompt by a
sequence of restrict regulations. These should prohibit
any textual data of dialog or markdown format other than
a JSON object and reiterate the fact that the output is
supposed to be a raw, easily parsable Content.

By following this six-part architecture one can offer a solid
design to achieve a great deal of reliability in structured JSON
generation across a broad set of LLMs and applications.

VI. CONCLUSION

The goal of this research paper was to find an answer
to a crucial challenge, which is the ability of Large Lan-
guage Models (LLMs) to generate sound and well-organized
information. This has continued to be one of the greatest
challenges in creating trustworthy applications that are Al-
centric. It evaluated one of the most effective prompt designs
in the Roadmint application, which demonstrated that a multi-
layered and thoughtfully designed prompt engineering strategy
has the capability to decrease the inherent heterogeneity of
LLMs and enables them to produce consistent and high-quality
outputs in the form of JSON.

It was found that the effectiveness of the prompt was not due
to a single trick. Rather, it was a combination of multiple

essential factors such as giving the model a distinct role giving
it instructions on how to reason, having a prominent and
annotated JSON schema as part of the prompt and having strict
rules to prevent the production of unwanted text. This prompt
structure similarly serves as a combination of in-context fine-
tuning that provisionally modifies a general purpose model
to achieve a particular task, in this case roadmap generation,
during inference.

The key finding of this study is that it is not a coinci-
dence when generating reliable structured data is the task
of engineering but it is not a impossible task. Developers
can minimize the inability to predict Al results and make
them less random and predictable by implementing more
elaborate prompts and going beyond instructions. The strate-
gies, recognized in the case study of the Roadmint may be
applied as a practical guideline to the developers who wish
to develop more foreseeable and reliable Al systems. As
this paper demonstrates that the timely engineering practice
will feature prominently in ensuring the LLMs safely and
effectively become a part of our technology.
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