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Abstract—Sequential recommendation systems are designed
to forecast the subsequent item a user is expected to engage
with, based on their past interactions. Both Generative Diffusion
Models for Sequential Recommendations (known as DiffuRecSys)
and Dual Conditional Diffusion Models for Sequential Recom-
mendation (referred to as DCRec) utilize diffusion models to
enhance the accuracy of recommendations. While DiffuRecSys
emphasizes improving robustness and understanding user-item
interactions via cross-attention and offset noise, DCRec adopts
a dual conditional strategy that combines both implicit and
explicit conditioning to boost recommendation accuracy and
computational efficiency. This paper presents a comparative
evaluation of the two methods, emphasizing their approaches,
significant contributions, and findings. Both models show re-
markable advances compared to leading baseline methods, with
DiffuRecSys particularly adept at understanding varied user
preferences, while DCRec stands out in terms of both accuracy
and efficiency. The overview wraps up with an examination of
their individual advantages, drawbacks, and possible paths for
future development.

Index Terms—Cross-attention, Diffusion models, Dual
conditioning, Generative modeling, Sequential recommendation.

I. INTRODUCTION

Sequential recommendation systems focus on forecasting

the subsequent item in a user’s interaction sequence by
utilizing their past behavior. Both DiffuRecSys and DCRec
employ diffusion models to overcome the shortcomings of
conventional sequential recommendation techniques, including
static item representations and their failure to accommodate
varied user preferences. Their methods diverge in distinct
ways:
DCRec suggests a dual conditional framework that combines
both implicit and explicit conditioning techniques. The model
preserves sequential and contextual details by embedding dual
conditions into the forward and backward diffusion processes.
DiffuRecSys concentrate on depicting item embeddings as
distributions instead of static vectors, facilitating a more
flexible representation of users’ varied interests. The model
incorporates noise into the target item embedding throughout
the diffusion stage and reconstructs it with the help of an
approximator.

II. RELATED WORK

Sequential recommendation systems have made significant
progress over the years, utilizing various machine learning

techniques to improve prediction accuracy. Earlier methods
depended on conventional techniques such as Matrix Factor-
ization (MF) and Collaborative Filtering (CF), which were
effective but had difficulty capturing changes in user behavior
over time. The advent of Recurrent Neural Networks (RNNs)
and, more recently, Transformer-based models represented
a significant advancement, as these frameworks could more
effectively represent sequential dependencies and interactions
over longer periods within user-item sequences.

Generative models and especially diffusion models have been
recognized as an effective approach to sequential recom-
mendations. These models progressively transform noisy in-
puts into organized outputs, providing benefits in terms of
flexibility and resilience. For instance, several studies have
utilized diffusion models to produce varied and high-quality
recommendations by mimicking a gradual denoising process.
Recommendation systems mainly utilized Matrix Factorization
(MF) and Collaborative Filtering (CF), which did not take
into account temporal aspects. Recent developments, includ-
ing RNNs, GRUs, and transformer-based architectures, have
enhanced performance by effectively capturing sequential rela-
tionships. Diffusion models, initially used for image generation
(such as DDPM), are being investigated in sequential contexts
due to their advantages in denoising and flexibility. DiffuRec-
Sys incorporates generative diffusion with offset noise to better
understand user preferences, whereas DCRec advances the
field by integrating both implicit and explicit user behavior
signals into the diffusion framework.

III. MODEL ARCHITECTURE

DCRec presents an advanced diffusion framework that
utilizes dual conditioning to address both immediate behav-
iors and enduring user preferences. Integrates implicit signals
(noisy user interaction data) and explicit signals (clean user
data) within both the forward and reverse diffusion processes,
ensuring the sequence context is maintained throughout the de-
noising journey. Central to this design is the Dual Conditional
Diffusion Transformer (DCDT), which employs self-attention
for processing noisy inputs and cross-attention to incorporate
clean contextual signals.

A significant innovation is the implementation of Condi-
tional Layer Normalization (CondLN), which modifies the
internal dynamics of the model based on both the condi-
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Fig. 1. The dual conditional diffusion workflow of DCRec. [2]
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Fig. 3. The design of DCDT. The black box refers to the main architecture,
the red box refers to the details within the transformer block, and the yellow
box refers to the details of the CondLLN module. [2]
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Fig. 2. The dual conditional diffusion workflow of DCRec. [2]

tioning signals and the current timestep, facilitating more
personalized and contextually relevant recommendations. To
enhance performance, DCRec integrates several training ob-
jectives, including regularization loss, diffusion reconstruction
loss, and ranking loss. It utilizes a step skipping mechanism
during inference to decrease computation while maintaining
accuracy. DiffuRecSys employs a more straightforward gener-
ative approach focused on a Transformer-based Approximator.
This approach starts by adding offset Gaussian noise to the
target item embedding to emulate uncertainty and bolster
training robustness. The noisy representation is then merged
with the user’s interaction history and processed through
the approximator, which incrementally reconstructs the clean
item embedding through sequential denoising. This model
predominantly utilizes a cross-attention mechanism to align
user behavior with the noisy target, effectively capturing
pertinent dependencies between historical interactions and the
forecasted item. The introduction of offset noise serves as a
regularizer, enhancing the model’s ability to generalize across
diverse user-item patterns while improving its noise resilience
during inference.

The methodologies adopted by DiffuRecSys and DCRec dif-
fer fundamentally in how they structure the diffusion process
for sequential recommendation. While both leverage denoising
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Fig. 4. Overview of the diffusion process for sequential recommendation:
(A) Injecting noise into the target item after s diffusion steps (B) Generating
new item representation based on user history and the last target item (C)
Reverse phase for target item reconstruction (D) Rounding phase to map the
continuous target representation to discrete item indices [|10]

diffusion models, they vary in conditioning strategies, recon-
struction techniques, and architectural complexity.

A. DCRec

DCRec presents a dual conditioning approach that merges
implicit signals derived from the noisy input sequence with
explicit signals obtained from the clean interaction history,
enhancing the learning experience. This framework enables
the model to preserve detailed sequential dependencies while
being conscious of the broader user behavior. Central to
this design is the Dual Conditional Diffusion Transformer
(DCDT), which utilizes self-attention on the noisy input and
cross attention with the clean history to dynamically assist in
the reconstruction process. Conditional Layer Normalization
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(CondLN) is implemented to adjust internal representations
at each timestep, allowing the model’s denoising function to
adapt to the changing context. DCRec also features a step
skipping method during inference, significantly minimizing
computational demands without compromising performance
an essential attribute for real time recommendation systems.

B. DiffuRecSys

DiffuRecSys employs a generative modeling technique,
where Gaussian noise is added to the target item embedding
to emulate uncertainty during training. This noisy embedding
is subsequently fed into a Transformer-based Approximator
that is trained to reverse the diffusion process and retrieve the
original target item. A notable improvement in DiffuRecSys is
the implementation of cross-attention, which allows the model
to concentrate on relevant sections of the user’s interaction
history during the reconstruction phase. This feature enables
the model to better understand complex user-item interactions
and enhance recommendation reliability. The iterative reverse
diffusion process gradually reduces the noise of the corrupted
target embedding, ultimately transforming it back into a mean-
ingful representation that is utilized for item ranking.

IV. KEY CONTRIBUTION

Both DiffuRecSys and DCRec bring significant innovations
to the field of diffusion based sequential recommendation
systems, yet they vary in their design focuses and technical
contributions.

DiffuRecSys aims to improve the robustness and expressive-
ness of generative recommendations. It implements offset
Gaussian noise during the training process to emulate un-
certainty in item embeddings, thereby enhancing the model’s
generalization capacity. It features a cross-attention mecha-
nism within the Transformer based Approximator, enabling the
model to effectively grasp user item interactions by focusing
on relevant aspects of the user’s history. Through these ar-
chitectural improvements, DiffuRecSys consistently surpasses
strong baseline models across various benchmark datasets
regarding recommendation accuracy.

DCRec introduces a more sophisticated dual conditional diffu-
sion framework that combines both implicit (noisy input) and
explicit (clean history) conditioning into the denoising process.
This dual-input approach allows the model to preserve tempo-
ral coherence and contextual accuracy. A key contribution of
DCRec is the introduction of the Dual Conditional Diffusion
Transformer (DCDT), which is improved with Conditional
Layer Normalization (CondLN), facilitating dynamic adjust-
ment based on both user behavior and the diffusion timestep.
With this design, DCRec achieves leading performance not
just in accuracy but also in computational efficiency, due to
its implementation of step-skipping during inference.

V. DATASET

Both studies assess their models using publicly accessible
benchmark datasets. DiffuRecSys employs Amazon Beauty,
Amazon Toys, and MovieLens-1M, which includes a million

movie ratings from users, while DCRec also makes use of
Amazon Beauty and Amazon Toys, substituting MovieLens-
IM with Yelp, a dataset that comprises user reviews of
businesses.

TABLE I
DATASET STATISTICS AND USAGE
Dataset Users Items | Interactions | Used In
Amazon Beauty | 22,363 12,101 198,502 | DiffuRecSys, DCRec
Amazon Toys 19,412 11,924 167,597 | DiffuRecSys, DCRec
MovieLens-1M 6,040 3,706 1,000,209 | DiffuRecSys
Yelp 30,499 | 20,068 317,182 | DCRec

VI. EXPERIMENTAL RESULT

Both DiffuRecSys and DCRec underwent thorough test-
ing on popular public benchmark datasets, such as Ama-
zon Beauty, Amazon Toys, MovieLens-1M, and Yelp. The
models were primarily evaluated using Hit Rate at rank 5
(HR@5) and Normalized Discounted Cumulative Gain at rank
5 (NDCG@5) as key metrics. The results for DiffuRecSys
indicated significant improvements over the baseline models
across all studied datasets. For instance, on Amazon Beauty, it
reached an HR@5 of 0.0667 and an NDCG @5 of 0.0458, sur-
passing the baseline figures of 0.0557 and 0.0400. Similarly,
on Amazon Toys, DiffuRecSys achieved HR @5 of 0.0684 and
NDCG@5 of 0.0455, again exceeding the baseline numbers.
The model especially excelled on MovieLens-1M, attaining a
high HR@5 of 0.1957 and NDCG @5 of 0.1319, underscoring
its effectiveness in dense user item interaction datasets.
DCRec also showcased impressive performance and efficiency.
On Amazon Beauty, it recorded an HR@5 of 0.0630 and
NDCG @5 of 0.0449, revealing slight advancements in ranking
precision over DiffuRecSys, despite having a marginally lower
hit rate. On Amazon Toys, DCRec surpassed all competing
methods with an HR@5 of 0.0690 and NDCG@5 of 0.0518,
setting a new benchmark for this dataset. On Yelp, which was
not included in the DiffuRecSys assessments, DCRec outper-
formed its baseline with an HR@5 of 0.0405 and NDCG@5
of 0.0272 compared to 0.0364 and 0.0253, respectively.
When both models were compared directly on shared datasets,
DiffuRecSys exhibited superior top-5 recommendation accu-
racy (HR@5) on Amazon Beauty, while DCRec demonstrated
better overall ranking performance (NDCG@5) on Amazon
Toys. These findings imply that both models effectively utilize
diffusion mechanisms but focus on different elements of rec-
ommendation quality. Both models significantly surpass their
respective baselines, reinforcing the benefits of employing
diffusion-based architectures in sequential recommendation
tasks.

Note: Baseline values for DCRec are approximate, derived
from graphs in. [2]] The specific models used as baselines (e.g.,
SASRec, BERT4Rec) are not uniformly specified in the original

papers.)
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TABLE II

PERFORMANCE COMPARISON ON HR@5 AND NDCG @5

Dataset Model HR@5 | NDCG@5 | Baseline HR@5 | Baseline NDCG@5

Amazon Beauty | DiffuRecSys 0.0667 0.0458 0.0557 0.0400
DCRec 0.0630 0.0449 0.0609 0.0437

Amazon Toys DiffuRecSys | 0.0684 0.0455 0.0557 0.0417
DCRec 0.0690 0.0518 0.0588 0.0447

MovieLens-1M DiffuRecSys | 0.1957 0.1319 0.1797 0.1212

Yelp DCRec 0.0405 0.0272 0.0364 0.0253

VII. STRENGTH AND LIMITATION

TABLE III

STRENGTHS AND LIMITATIONS OF DIFFURECSYS AND DCREC

Model

Strengths

Limitations

DiffuRecSys

- Effectively captures diverse
user preferences

- Robust to input noise via
offset Gaussian noise

- Strong performance in
HR@5 on multiple datasets

- Relatively weaker on long-
tail and infrequent items

- Performance sensitive to
noise scheduling and tuning

DCRec

- Models both implicit and
explicit context for richer per-
sonalization

- Efficient inference using

- Architecturally more com-
plex and resource-intensive

- Requires careful tuning of
implicit explicit balance fac-

TABLE IV
CONCLUSION ON DIFFURECSYS AND DCREC
Aspect DiffuRecSys DCRec
Approach Generative Diffusion | Dual Conditional Diffu-
Model with offset noise | sion Model with explicit +
and cross-attention implicit conditioning
Key Focus Capturing diverse user | Improving accuracy and

preferences and improv-
ing robustness

efficiency via dual condi-
tioning

Conditioning Type

Single conditioning (noisy
target + history)

Dual conditioning: noisy
history (implicit) + clean
history (explicit)

generalization, Cross-
attention  to  capture
item-item interactions

Architecture Transformer-based Dual Conditional
Approximator with | Diffusion Transformer
cross-attention and offset | (DCDT) with CondLN,
Gaussian noise cross-attention, and self-

attention

Innovation Offset noise for better | Explicit signal injection

using CondLN and dual-
attn for context awareness

Datasets Used

e Amazon Beauty
e Amazon Toys
e MovieLens-1M

e Amazon Beauty
¢ Amazon Toys
e Yelp

step-skipping tors
- High NDCG@5, especially
on context-sensitive datasets

VIII. CRITICAL ANALYSIS & DISCUSSION

Diffusion based sequential recommended represent a power-
ful yet resource intensive modeling paradigm. While DCRec’s
dual conditioning improves contextual expressiveness and Dif-
fuRecSys provides a comparatively simpler diffusion frame-
work, both approaches introduce substantial training and infer-
ence overhead that challenges real time applicability. Their re-
liance on dense interaction histories limits effectiveness in cold
start and long tail settings, where hybrid or feature enriched
models may offer more robust performance. The marginal
accuracy gains reported by diffusion based methods must be
carefully evaluated against their computational complexity,
scalability, and deployment feasibility. Future research should
therefore focus on efficiency aware diffusion mechanisms,
integration with side information, or hybrid architectures that
balance modeling power with practical usability.

IX. CONCLUSION

Both DiffuRecSys and DCRec highlight the promising
capabilities of diffusion models to enhance sequential rec-
ommendation systems. DiffuRecSys emphasizes robustness
and diversity by utilizing offset noise and cross attention to
effectively capture various user item interactions and boost
accuracy however, it faces challenges with long tail items due
to limited data. DCRec uses a more intricate dual conditional
framework that incorporates both implicit and explicit con-
ditioning to maintain sequential context, skillfully modeling
overall behavior as well as detailed temporal dependencies,
leading to improved ranking and efficiency, though it de-
mands a careful balance of conditioning signals. Experimental
findings indicate that both models surpass strong baseline
methods, with DiffuRecSys standing out for its simplicity

Evaluation Metrics | HR@5, NDCG@5 HR@5, NDCG@5

and robustness, whereas DCRec presents a more enriched and
adaptable approach. This suggests that future research might
benefit from hybrid models that combine the robustness of
diffusion methods with dual conditioning to further enhance
the performance of sequential recommendations.

REFERENCES

[1] Z. Li, A. Sun, and C. Li, “DiffuRec: A Diffusion Model for Sequential
Recommendation,” arXiv preprint arXiv:2304.00686, 2023. https://arxiv.
org/abs/2304.00686

[2] H. Huang, C. Huang, T. Yu, X. Chang, W. Hu, J. McAuley, and L. Yao,
“Dual Conditional Diffusion Models for Sequential Recommendation,”
arXiv preprint arXiv:2410.21967, 2024. https://arxiv.org/abs/2410.21967

[31 X. Li, Y. Zhang, and M. Chen, “ADRec: Addressing Embed-
ding Collapse in Diffusion-Based Recommendations,” arXiv preprint
arXiv:2505.19544, 2025.

[4] L. Chen and Q. Zhu, “Discrete-State Diffusion for Sequential Recom-
mendation (DDSR),” NeurIPS 2024 Poster, 2024.

[51 Y. Zhang, L. Liu, and X. Wang, “GCNTRec: Graph Convolutional
Network + Transformer for Sequential Recommendation,” Algorithms,
vol. 14, no. 9, 2022.

[6] M. Bian, D. Yu, and X. Li, “SURGE: GNN-based Sequential Recom-
mendation Framework,” ACM Digital Library, 2020.

[71 H. Kim and S. Park, “RecPPT: Pretrained Language Model Repro-
gramming for Sequential Recommendation,” Information Processing &
Management, 2024,

[8] J. Chen, Q. Zhu, and L. Liu, “Sequential Recommendation with Trans-
former and Graph Neural Networks,” in Proc. WWW, 2021, pp. 2235-
2245.

[9]1 D. Yu, M. Bian, and X. Li, “Learning to Recommend with Generative
Adversarial Nets,” in Proc. KDD, 2017, pp. 1855-1864.

[10] S. Zolghadr, O. Winther, and P. Jeha, “Generative Diffusion Models for
Sequential Recommendations,” unpublished manuscript, 2025.

Proceedings of International Conference on Innovation in Computing, Science, Engineering and Technology 2025

Page 31


https://arxiv.org/abs/2304.00686
https://arxiv.org/abs/2304.00686
https://arxiv.org/abs/2410.21967

	Introduction
	Related Work
	Model Architecture
	DCRec
	DiffuRecSys

	Key Contribution
	Dataset
	Experimental Result
	Strength and Limitation
	Critical Analysis & Discussion
	Conclusion
	References

