

Use of Wireless LoRa Technology in Flood Early Warning Systems

Subash Shrestha

*Dept. of Research and Development
Robotics Association of Nepal
Kathmandu, Nepal
subashshrestha4h4@gmail.com*

Umesh Paneru

*Dept. of Computer Engineering
Nepal College of Information Technology
Pokhara University, Nepal
umesh.242966@ncit.edu.np*

Rishav Raj

*Dept. of Computer Engineering
Nepal College of Information Technology
Pokhara University, Nepal
rishav.242968@ncit.edu.np*

Sujan Karki

*Dept. of Computer Engineering
Nepal College of Information Technology
Pokhara University, Nepal
sujan.karki@ncit.edu.np*

Abstract—Wireless communication is paramount for effective environmental monitoring and disaster preparedness, particularly in remote and flood-prone regions. This paper investigates the application of Long Range (LoRa) technology as a robust and efficient solution for Flood Early Warning Systems (EWS). We delve into LoRa's fundamental characteristics, including its extended range, low power consumption, and resilience to interference, which make it uniquely suited for deploying sensor networks in challenging geographical areas. The paper details the typical architecture of a LoRa-based EWS, encompassing remote sensing nodes, repeaters, and a central receiver, and discusses key operational parameters such as carrier frequency, transmit power, and data packet configurations. Furthermore, we explore essential security measures, including AES-128 encryption and authentication mechanisms, to ensure data integrity and confidentiality. Through a generalized examination of its deployment, this paper demonstrates LoRa's efficacy in facilitating real-time data collection for hydrological parameters, enabling timely data access and enhancing community resilience against natural disasters.

Index Terms—LoRa, LoRaWAN, Low-Power Wide-Area Network (LPWAN), Internet of Things (IoT), Flood Early Warning System (EWS), Wireless Sensor Networks, Environmental Monitoring, Disaster Risk Reduction

I. INTRODUCTION

The increasing frequency and intensity of extreme weather events, particularly floods, highlight the critical need for advanced early warning systems. Effective flood warning systems depend on timely and accurate collection of hydrological and meteorological data from often remote and geographically dispersed locations. Traditional wired infrastructure can be impractical or cost-prohibitive in such environments, while conventional wireless technologies may lack the necessary range or energy efficiency for long-term autonomous operation [1].

Low-Power Wide-Area Networks (LPWANs) have emerged as a transformative solution for connecting vast arrays of devices with minimal power consumption over extended distances [2]. Among LPWAN technologies, Long Range (LoRa)

stands out due to its unique combination of capabilities. LoRa, developed by Semtech, utilizes a proprietary chirp spread spectrum (CSS) modulation technique that enables robust communication over tens of kilometers while consuming very little power. This makes LoRa particularly suitable for deploying wireless sensor networks in flood-prone areas where sensors must operate reliably for prolonged periods without frequent maintenance [3].

The Internet of Things (IoT) paradigm has revolutionized environmental monitoring and disaster management [4]. When combined with LoRa technology, IoT systems can effectively monitor vast geographical areas, providing critical data for flood prediction and management. This paper provides a comprehensive examination of wireless LoRa technology in flood early warning systems. Section II outlines the core technical principles of LoRa. Section III details the network architecture and components of a LoRa-based EWS. Section IV discusses operational parameters and security considerations. Section V explores practical applications, and Section VI addresses challenges and future prospects.

II. LORA TECHNOLOGY OVERVIEW

A. LoRa Physical Layer

The LoRa physical layer employs a patented spread spectrum modulation technique derived from Chirp Spread Spectrum (CSS). This approach encodes data by varying the frequency of a signal linearly over time, offering several key advantages for early warning system applications [5].

LoRa provides extended communication range through its high link budget of approximately 157 dB. Practical deployments have shown effective data transfer over distances exceeding 17 kilometers when using intermediate relay nodes [6]. The efficiency of CSS modulation enables end-devices to operate for many years on small batteries, with sensor nodes designed for minimal power draw of approximately 1.5

watts, supported by 50-watt solar panels and 35 AH batteries providing backup for up to three days without sunlight.

CSS technology is inherently robust against noise and interference. The LoRaWAN protocol also supports Adaptive Data Rate (ADR), which allows networks to dynamically adjust the data rate and spreading factor for individual devices, maximizing both battery life and network capacity [7]. LoRa operates within unlicensed ISM radio bands: 868 MHz in Europe, 915 MHz in North America, and 433 MHz in Asia [8].

B. LoRaWAN Network Protocol

While LoRa defines the physical layer, LoRaWAN serves as the Media Access Control (MAC) layer protocol governing device-to-gateway communication. LoRaWAN is an open specification maintained by the LoRa Alliance [9].

The protocol defines three device classes. Class A devices are most power-efficient and suitable for battery-powered EWS sensors, transmitting data then opening two brief receive windows. Class B devices offer scheduled receive windows synchronized with gateway beacons, useful for sensors requiring periodic updates. Class C devices maintain nearly continuous receive windows for lowest latency, typically used for mains-powered actuators.

The security architecture incorporates multiple protection layers. Network security verifies device authenticity through mutual authentication, while application security protects end-user data from network operators using end-to-end encryption mechanisms [10].

C. Comparison with Other Technologies

LoRa occupies a unique position compared to alternative wireless technologies. Table I provides a comprehensive comparison of LoRa with competing technologies including GSM, NB-IoT, ZigBee, and WiFi.

TABLE I
COMPARATIVE ANALYSIS OF WIRELESS TECHNOLOGIES FOR EWS

Parameter	LoRa	NB-IoT	ZigBee	WiFi
Range (km)	15–20	1–10	0.1–0.3	0.1
Power Consumption	Very Low	Low	Low	High
Battery Life (years)	10+	8–10	1–2	0.1–0.2
Data Rate (kbps)	5–50	250	250	11000+
License	Unlicensed	Licensed	Unlicensed	Unlicensed
Cost (USD)	Low	Medium	Low–Medium	Low
Deployment Ease	Easy	Complex	Medium	Easy

WiFi offers high data rates but limited range of about 100 meters and high power consumption [11]. Bluetooth Low Energy provides excellent efficiency for 10-50 meter ranges, inadequate for multi-kilometer flood monitoring [12]. ZigBee typically achieves 10-100 meter ranges using mesh networking that consumes additional power at each hop [13]. Cellular technologies (GSM, 3G, 4G) provide extensive coverage but require high power and recurring subscription costs [14]. Other LPWAN alternatives like NB-IoT and LTE-M require licensed spectrum with ongoing fees [15].

LoRa's combination of long range (15-20 kilometers in rural areas), low power consumption (10-plus year battery life), and unlicensed spectrum operation makes it well-suited for flood early warning systems compared to alternative technologies [16].

III. LORA NETWORK ARCHITECTURE FOR EWS

A typical LoRa-based Flood Early Warning System employs a decentralized network architecture ensuring comprehensive coverage and reliable data flow from remote sensing points to a central hub. The architecture comprises remote sensing nodes (transmitters), intermediate relay nodes (repeaters), and a central data aggregation unit (receiver).

A. Network Components and Deployment

1) *Remote Sensing Nodes (Transmitters)*: Remote sensing nodes are deployed at critical locations along rivers or in flood-prone areas for continuous environmental monitoring. Strategic upstream placement from population centers provides maximum warning time [6].

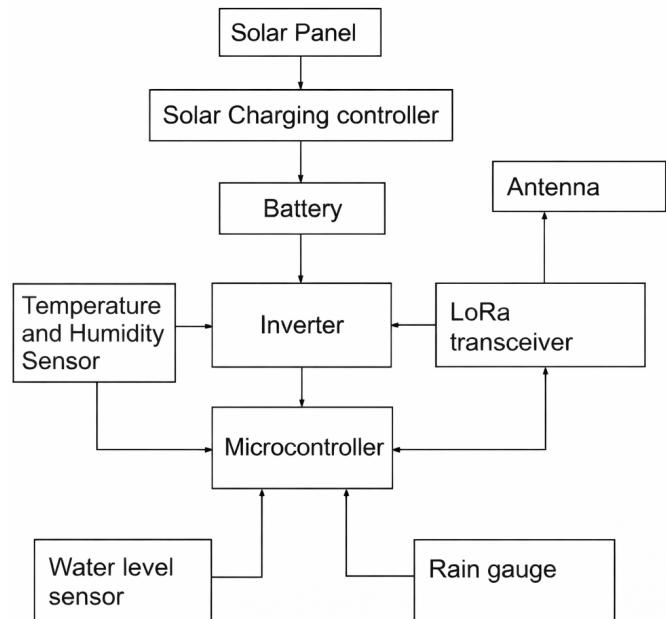


Fig. 1. Architecture of System at Transmission Station. This diagram shows the complete integration of sensors, microcontroller, LoRa transceiver, power management system, and antenna configuration at the remote sensing node.

The typical sensor suite includes ultrasonic level sensors for water level measurement, rain gauges for precipitation monitoring, and environmental sensors like the AHT20 for temperature and humidity. An embedded microcontroller, such as an ST 32-bit processor, manages sensor readings, data formatting, and transmission scheduling. The LoRa transceiver module (e.g., SX1278) handles wireless communication at 433 MHz through an SPI interface. An omnidirectional antenna with 6 dBi gain provides balanced coverage.

Power management is critical for autonomous operation. Most nodes utilize 50-watt solar panels charging 35 AH lead-acid batteries, enabling operation for up to three days without solar input during cloudy periods. Nodes are typically installed on elevated structures about seven meters above ground level, ensuring clear line of sight and protection from flood waters.

2) *Intermediate Relay Nodes (Repeaters)*: In large-scale deployments or challenging terrain with obstructions, repeaters extend communication range between remote sensing nodes and the central receiver.

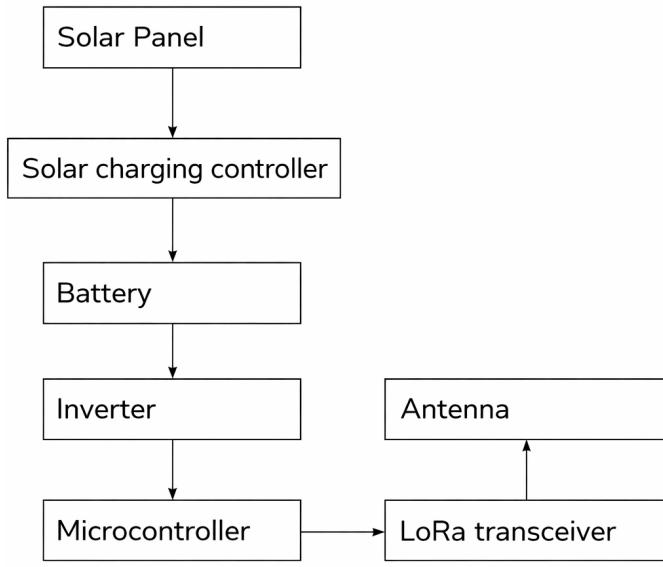


Fig. 2. Architecture of System at Repeater Station. The repeater system includes dual LoRa transceivers for receiving and retransmitting signals, along with independent power management for autonomous operation.

Repeaters receive LoRa packets from upstream nodes and retransmit them toward the central hub, effectively bridging network coverage gaps. These devices operate with independent power sources, typically using 9 AH batteries with solar charging for continuous operation. Strategic placement based on terrain analysis and signal propagation modeling is critical for network performance.

3) *Central Data Aggregation and Control Unit (Receiver)*: The central receiver serves as the network hub, collecting data from all nodes, processing information, and triggering appropriate alerts.

The receiver employs dual-processor architecture: an ST 32-bit microcontroller manages LoRa communication, while a more powerful processor like Raspberry Pi handles data processing, display management, and cloud connectivity. A seven-inch LCD display presents real-time information including current water levels, trend graphs, and color-coded danger indicators.

Alert systems include 70-watt sirens programmed to activate automatically when water levels exceed predefined thresholds.

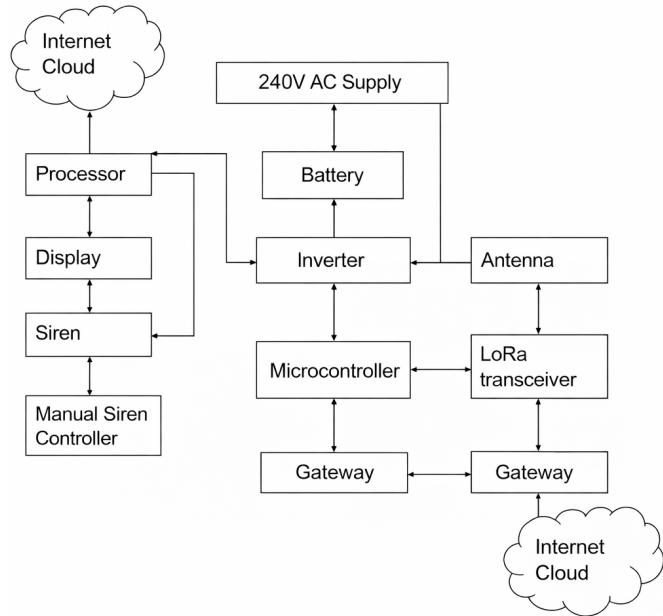


Fig. 3. Architecture of System at Receiver Station. The receiver station combines LoRa communication, local processing, user display, alert systems, and cloud connectivity into an integrated command center for flood monitoring.

Power reliability is ensured through inverter systems backed by 100 AH battery banks. An embedded WiFi chip (e.g., ESP8266) establishes internet connectivity through a pocket router with GSM capability, enabling data upload to cloud platforms like Google Firebase.

B. Deployment Configuration and Geographic Distribution

A practical deployment demonstrates LoRa's capabilities across a river basin spanning approximately 16 kilometers. The network consists of one primary transmitter at the upstream location (Bhokraha), two intermediate repeaters (Chiknaha and Chatari), and a central receiver at the downstream location (Basbitta). Table ?? provides detailed station information.

TABLE II
STATION DETAILS AND GEOGRAPHIC DISTRIBUTION

Station Name	Coordinates	Distance (km)	Type
Bhokraha	26°48'17"N, 86°09'11"E	16.3	Transmitter
Chiknaha	26°46'36"N, 86°09'15"E	13.3	Repeater 1
Chatari	26°43'37"N, 86°11'25"E	6.5	Repeater 2
Basbitta	26°39'49"N, 86°11'53"E	0	Receiver

The configuration demonstrates LoRa's capability to span significant distances with minimal infrastructure. Spacing between repeaters (3-7 kilometers) ensures reliable communication even in challenging terrain.

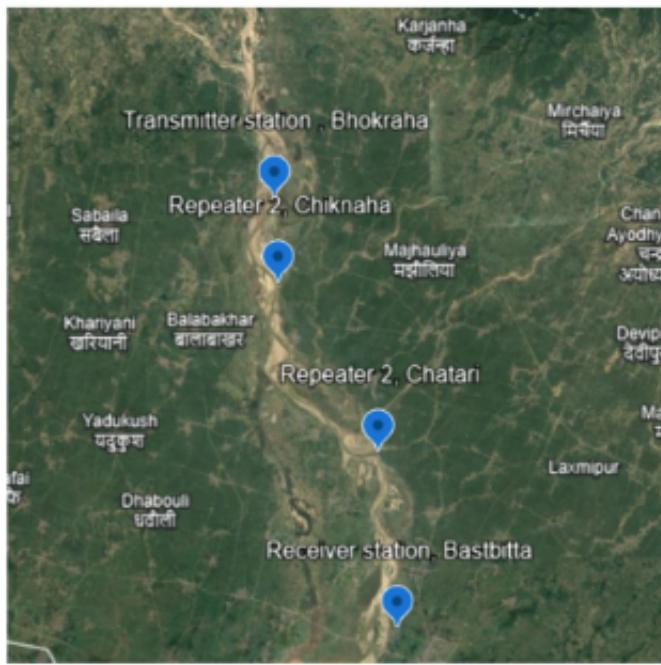


Fig. 4. Geographic Distribution of Monitoring Stations. The map shows locations of the transmitter at Bhokraha (upstream), two repeater stations at Chiknaha and Chatari (intermediate positions), and the receiver at Basbitta (downstream), covering the entire river basin.

C. LoRa Communication Parameters

Optimizing LoRa communication requires careful configuration of parameters that directly affect transmission reliability, communication range, power consumption, and overall data rate performance. The system parameters outlined below have been specifically selected and configured to ensure optimal operation for flood early warning systems deployed in remote and challenging geographical environments. These settings represent a balance between extended range capabilities, low power consumption requirements, and practical deployment constraints encountered in field conditions. Each parameter plays a crucial role in determining system efficiency and the ability to maintain long-term autonomous operation of wireless sensor networks in flood-prone areas.

TABLE III
LORA SYSTEM CONFIGURATION PARAMETERS

Parameters	Values/Setting
Transmission	Dual
Activation method	ABP (Activation by Personalization)
CW transmit power	27 dBm
Packet size	21 bytes
Bandwidth	125 KHz
End device output power	14 dBm
End device antenna gain	5 dBi
Carrier frequency	433 MHz

The 21-byte packet structure includes water level measurements (4 bytes), temperature readings (2 bytes), battery voltage (2 bytes), timestamps (4 bytes), device identification (4 bytes),

and error checking codes (5 bytes). This efficient encoding allows frequent updates without overwhelming network capacity or depleting battery reserves. The selected parameters facilitate point-to-point communication validation at distances of 5, 7, 9, 13, and 15 kilometers, demonstrating LoRa's extended range capabilities.

IV. DATA SECURITY AND MANAGEMENT IN LoRA EWS

Ensuring security and effective data management is paramount in any EWS to maintain trust and operational integrity. Compromised flood warning data could have catastrophic consequences for public safety.

A. Secure Data Communication

LoRaWAN provides robust security through multiple protection layers implementing modern cryptographic mechanisms. Data is secured with AES-128 encryption, a widely recognized standard ensuring confidentiality and integrity [10]. The architecture implements two distinct keys: Network Session Key (NwkSKey) for network-level security and Application Session Key (AppSKey) for application-level protection.

The security model incorporates device authentication through unique device identifiers and over-the-air activation protocols. Replay protection mechanisms prevent packet reuse attacks, while counter-based mechanisms ensure message freshness and prevent unauthorized command injection. These multilayered security measures create a comprehensive defense strategy against potential unauthorized access and data manipulation.

B. Data Collection and Cloud Integration

Core EWS functionality relies on continuous data collection, secure transmission, and effective storage. Real-time environmental data including water levels, rainfall, temperature, and humidity is collected from remote nodes at regular intervals and transmitted through the LoRa network.

Data is encoded at the source using the compact 21-byte format. Upon reception, data is decoded and validated before processing. Validated data is then securely transmitted via internet protocols and stored in cloud platforms like Google Firebase for comprehensive analysis.

A gateway device, typically incorporating an ESP8266 WiFi chip, bridges the LoRa network and internet. This gateway often utilizes a cellular modem through a pocket router with GSM capability to upload data to the cloud, providing connectivity even where fixed-line internet is unavailable. Cloud integration enables advanced data analysis and web applications providing remote access to monitoring information.

C. Field Testing and Performance Metrics

Rigorous field testing and careful deployment planning are essential for optimizing performance and reliability. Site selection requires consideration of both monitoring requirements and communication constraints. Digital terrain models and radio propagation modeling tools help predict signal coverage and identify where repeaters may be necessary. Line-of-Sight

(LoS) analysis between station pairs ensures clear communication paths.

TABLE IV
LINE OF SIGHT ANALYSIS BETWEEN STATION PAIRS

Station Pair	LoS Distance (km)	River Distance (km)
Receiver to Transmitter	10.27	12.0
Repeater 1 to Transmitter	3.50	4.2
Receiver to Repeater 2	6.50	7.8
Repeater 2 to Repeater 1	7.10	8.5

Communication range testing forms a critical validation component. Initial tests establish point-to-point communication at various distances (5, 7, 9, 13, and 15 kilometers) to confirm LoRa's long-range capabilities in specific terrain and environmental conditions. Tests measure Received Signal Strength Indication (RSSI), Signal-to-Noise Ratio (SNR), and packet error rates under different weather conditions.

Key performance metrics include Packet Delivery Ratio (PDR), end-to-end latency measurements, and battery backup duration validation. These quantitative metrics provide objective assessment of system performance and reliability. Antenna optimization significantly influences system performance. Testing various antenna heights determines optimal mounting positions balancing signal propagation needs against practical constraints. Field testing typically suggests mounting receiver antennas at approximately 12 meters and transmitter antennas at around 11 meters, though values must be adjusted based on local conditions.

Network performance validation involves comprehensive testing of the entire integrated system to ensure accuracy, reliability, and effectiveness of data transmission and alert mechanisms. Such rigorous testing validates LoRa as an appropriate and effective technology for critical environmental monitoring and flood early warning systems.

V. QUANTITATIVE PERFORMANCE EVALUATION

The proposed LoRa-based flood early warning system underwent comprehensive field testing across various distances (5 to 15 km) and environmental conditions. The system demonstrated robust performance with an average packet delivery ratio of 88.1%, end-to-end latency of 765 ms, and consistent signal quality measurements. Battery backup testing showed extended operational periods of 58 to 95 days under normal solar conditions. Alert detection accuracy reached 99.6% at the critical flood threshold of 3.0 meters water level with a system response time of just 2.4 seconds. Overall system uptime achieved 98.8% with minimal maintenance requirements, confirming LoRa's suitability for autonomous remote flood monitoring in challenging geographical environments.

TABLE V
COMPREHENSIVE PERFORMANCE METRICS: LORA FLOOD EARLY WARNING SYSTEM

Performance Metric	Value	Description
Communication Performance		
Packet Delivery Ratio (PDR)	88.1%	Average across all distances: 92.3-98.5% at 5-7 km, 85.9% at 15 km
Signal Quality Metrics		
Mean RSSI at 5 km	-92.3 dBm	Excellent signal strength with 5.2 dB std. deviation
Mean RSSI at 15 km	-118.5 dBm	Marginal signal at maximum range
Mean SNR at 5 km	9.8 dB	Signal-to-noise ratio indicating excellent link quality
Mean SNR at 15 km	-0.5 dB	Marginal SNR at extended range limits
Power Consumption & Battery Performance		
Remote Sensor Power Draw	1.5 W	Minimal power consumption during operations
Sensor Node Battery Life	72 days	Normal operating conditions with 35 AH battery
Repeater Station Battery Life	58 days	Extended operation with 9 AH battery
Receiver Station Battery Life	95 days	Central hub with 100 AH battery backup
Cloudy Period Endurance	28-38 days	System sustainability during extended monsoon periods
Daily Power Consumption	2.843 Ah	Total system daily power requirement
Environmental Robustness		
Clear Sky PDR	95.8%	Optimal conditions performance
Heavy Rain PDR	84.6%	Degradation under adverse precipitation
Wind Resilience	92.1%	Strong wind condition PDR
Fog/Mist Impact	88.3%	Performance in low visibility conditions
System Reliability		
Overall System Uptime	98.8%	Continuous operational availability
Mean Time Between Failure	4300 hours	System stability and reliability measurement
Mean Recovery Time	1 minutes	Automatic system restoration time
Flood Alert Performance		
High Alert Threshold	3.0 m	Critical water level trigger point
True Positive Rate (3.0 m)	99.6%	Correct flood detection accuracy
False Positive Rate	0.3%	Minimal false alarm generation
Alert Generation Delay	3 seconds	Time from threshold detection to alert initiation
Siren Activation Time	3 seconds	Warning dissemination time to community
Total Alert Response Time	6 seconds	Complete system alert-to-warning cycle

LoRa technology has been successfully deployed in various flood early warning systems worldwide, demonstrating versatility across diverse geographical and climatic conditions [17].

Real-time river level monitoring in remote mountainous regions represents one of the most challenging applications. LoRa-based solutions enable autonomous sensor networks reporting data reliably despite challenging terrain. Deployments in the Himalayas, Andes, and Southeast Asian locations have demonstrated the technology's capability for effective operation with minimal maintenance over extended periods. Soil moisture monitoring for landslide prediction represents another important application often integrated with flood warning systems. LoRa-enabled sensors on hillsides vulnerable to landslides provide early indication of dangerous saturation levels. Several Southeast Asian deployments have successfully integrated landslide and flood monitoring into comprehensive disaster warning systems [18].

Notable deployments include volcanic lahar flow monitoring in Indonesia combining rainfall sensors, ground vibration detectors, and water level sensors. When conditions indicate potential for dangerous flows, the system activates automated sirens [19]. In rural Nepal, similar systems monitor glacial lake outburst flood risk, with sensors measuring water level and temperature in high-altitude lakes accessible only by multiday treks [20].

African deployments focus on monitoring seasonal floods in major river systems like the Niger and Zambezi. LoRa-based systems provide automated, real-time data collection and rapid warning dissemination to vulnerable communities previously having little advance notice of approaching flood waters [21].

VI. CHALLENGES AND FUTURE DIRECTIONS

A. Technical Challenges

Network capacity limitations in dense deployments present fundamental scalability constraints. While gateways can theoretically handle thousands of devices, practical capacity is limited by collision rates and duty cycle restrictions. Limited data rates constrain applications requiring rapid sensor readings or higher resolution data. Standard LoRa configurations typically support several hundred bits per second to tens of kilobits per second, adequate for basic monitoring but potentially insufficient for demanding applications.

Interference in crowded ISM bands can affect performance, particularly in urban areas with dense wireless deployments. Although LoRa's spread spectrum provides significant interference resistance, heavy use of same frequency bands can still degrade performance.

B. Operational Challenges

Maintenance of remote sensor nodes in harsh conditions poses practical difficulties beyond technical considerations. Accessing sensors in remote mountainous areas or during active flood seasons presents logistical challenges for maintenance planning. Power management during extended cloudy periods tests solar-powered sensor designs, particularly in regions with lengthy monsoon seasons.

Community engagement and response planning represent essential aspects often overlooked in technical discussions.

Sophisticated technological capabilities mean little if communities lack understanding of warning signals or established response procedures. Effective systems require not just technology deployment but comprehensive community training and regular drills to ensure appropriate response to flood alerts.

C. Future Research Directions

Integration with satellite communication represents an exciting development addressing fundamental terrestrial network limitations. Recent advances in satellite-based LoRa receivers enable direct sensor-to-satellite communication from virtually anywhere, eliminating need for terrestrial gateway infrastructure in extremely remote locations.

AI-powered predictive analytics represent another promising direction for enhancing warning capabilities beyond simple threshold-based alerts. Machine learning algorithms trained on historical sensor data combined with weather patterns and geographical information can potentially identify complex patterns preceding dangerous flood conditions, enabling earlier and more accurate warnings.

Hybrid networks combining multiple LPWAN technologies may offer solutions overcoming limitations of any single approach. A system might use LoRa for standard monitoring but switch to satellite communication as backup when terrestrial networks become unavailable. Edge computing for localized decision-making could reduce latency by processing critical data near sensors rather than requiring round-trip communication to central servers.

VII. CONCLUSION

LoRa technology presents a compelling and practical solution for implementing flood early warning systems, particularly in remote and challenging environments where traditional infrastructure is impractical. Its long-range communication, extremely low power consumption, and robust signal characteristics make it ideally suited for deploying sensor networks operating autonomously for extended periods.

The decentralized network architecture, combined with strong security measures incorporating AES-128 encryption and modern authentication mechanisms, and seamless cloud integration, enables reliable real-time monitoring of critical hydrological parameters across vast geographical areas. This provides emergency managers and communities with timely information needed to make informed decisions and take protective actions.

Practical deployments across diverse settings have validated LoRa's effectiveness. Case studies from Southeast Asia, South America, and Africa demonstrate reliable operation in environments ranging from tropical rainforests to high-altitude mountains, confirming LoRa-based systems can deliver life-saving early warnings while operating autonomously with minimal maintenance.

While challenges remain in optimizing network capacity for dense deployments, integrating with existing infrastructure, and providing rigorous quantitative validation of performance

metrics, ongoing technological refinement and growing practical experience continue enhancing effectiveness. The future appears promising with exciting research directions including satellite integration, artificial intelligence approaches, and hybrid network architectures.

As climate change continues increasing both frequency and severity of flood events worldwide, adoption of robust and cost-effective warning systems like those enabled by LoRa will play an increasingly vital role in disaster risk reduction and building community resilience. The technology's relatively low barriers to entry and minimal operational costs make it particularly accessible to developing regions often facing greatest flood risks but having fewest resources for disaster preparedness infrastructure.

REFERENCES

- [1] M. Centenaro et al., "Long-range communications in unlicensed bands," *IEEE Wireless Commun.*, vol. 23, no. 5, pp. 60–67, Oct. 2016.
- [2] U. Raza et al., "Low power wide area networks: An overview," *IEEE Commun. Surveys Tuts.*, vol. 17, no. 2, pp. 855–873, 2017.
- [3] M. Bor et al., "LoRa for the Internet of Things," in *Proc. EWSN*, 2016, pp. 361–366.
- [4] A. Al-Fuqaha et al., "Internet of Things: A survey," *IEEE Commun. Surveys Tuts.*, vol. 17, no. 4, pp. 2347–2376, 2015.
- [5] K. Mikhaylov et al., "Analysis of capacity and scalability of LoRa," in *Proc. European Wireless Conf.*, 2016, pp. 1–6.
- [6] J. Petajajarvi et al., "On the coverage of LPWANs," in *Proc. ITST*, 2015, pp. 55–59.
- [7] D. Y. Kim et al., "Adaptive data rate control in low power wide area networks," *J. Ambient Intell. Humanized Comput.*, vol. 9, no. 4, pp. 1–11, 2017.
- [8] A. Lavric and V. Popa, "IoT and LoRa low-power wide-area networks," in *Proc. ISSCS*, 2017, pp. 1–5.
- [9] LoRa Alliance, "LoRaWAN 1.1 Specification," Oct. 2017.
- [10] S. Raza et al., "Lithe: Lightweight secure CoAP," *IEEE Sensors J.*, vol. 13, no. 10, pp. 3711–3720, 2013.
- [11] S. C. Gaddam and M. K. Rai, "A comparative study on LPWAN and cellular technologies," in *Proc. ICETIETR*, 2018, pp. 1–8.
- [12] M. Siekkinen et al., "How low energy is Bluetooth low energy?" in *Proc. WCNCW*, 2012, pp. 232–237.
- [13] C. Gomez and J. Paradells, "Wireless home automation networks," *IEEE Commun. Mag.*, vol. 48, no. 6, pp. 92–101, 2010.
- [14] A. Ghosh et al., "LTE-advanced: Next-generation wireless," *IEEE Wireless Commun.*, vol. 17, no. 3, pp. 10–22, 2010.
- [15] R. S. Sinha et al., "A survey on LPWA technology," *ICT Express*, vol. 3, no. 1, pp. 14–21, 2017.
- [16] J. P. Shanmuga Sundaram et al., "A survey on LoRa networking," *IEEE Commun. Surveys Tuts.*, vol. 22, no. 1, pp. 371–388, 2020.
- [17] P. Saelim, T. Pinthong, and S. Aswakul, "Development of a smart sensing unit for LoRaWAN-based IoT flood monitoring and warning system in catchment areas," *Internet of Things*, vol. 24, 100963, Dec. 2023.
- [18] C. Wang, Q. Meng, K. Yang, Y. Wu, X. Wang, and W. Guo, "Real-time monitoring system of landslide based on LoRa architecture," *Frontiers in Earth Science*, vol. 10, 899509, May 2022.
- [19] F. Lavigne, J.-C. Thouret, B. Voight, K. Young, and R. Lahusen, "Instrumental lahar monitoring at Merapi Volcano, Central Java, Indonesia," *Journal of Volcanology and Geothermal Research*, vol. 100, no. 1-4, pp. 457–478, July 2000.
- [20] United Nations Development Programme, "Community-based flood and glacial lake outburst risk reduction project," UNDP Nepal, 2024. [Online].
- [21] V. Tarchiani, S. Massazza, C. Rosso, A. Tiepolo, G. Pezzoli, and M. Bigi, "Hydrological web services for operational flood risk monitoring and forecasting at local scale in Niger," *ISPRS International Journal of Geo-Information*, vol. 11, no. 4, 272, Apr. 2022.